
Convergo: Multi-SLO-Aware Scheduling for Heterogeneous
AI Accelerators on Edge Devices

Ting Jiang∗, Jianwei Hao†, Sushruth Harsha∗, Rakandhiya D. Rachmanto∗,
Arief Setyanto‡, Lakshmish Ramaswamy∗, and In Kee Kim∗

∗University of Georgia, {ting.jiang1, sushruth.harsha, rakandhiya.rachmanto, laksmr, inkee.kim}@uga.edu
†Governors State University, jhao@govst.edu

‡Universitas Amikom Yogyakarta, arief s@amikom.ac.id

Abstract—With the growing prevalence of edge AI, systems are
increasingly required to meet stringent and diverse service level
objectives (SLOs), such as maintaining specific accuracy levels,
ensuring sufficient inference throughput, and meeting deadlines,
often simultaneously. However, concurrently achieving these var-
ied and complex SLOs is particularly challenging due to the
resource constraints of edge devices and the heterogeneity of AI
accelerators. To address this gap, we present a novel AI schedul-
ing framework, Convergo, which uniquely integrates heteroge-
neous accelerator management, multi-tenancy, and multi-SLO
prioritization into one scheduling solution. Convergo not only
leverages heterogeneous AI accelerators and supports AI multi-
tenancy, but also integrates scheduling heuristics to meet multiple
SLOs concurrently. Convergo enables the simultaneous satis-
faction of multiple/complex SLO requirements (e.g., accuracy,
throughput, and deadline constraints). The scheduling algorithm
prioritizes inference requests, imposes critical constraints, and
selects the best model combinations for current inferencing. We
evaluated Convergo on the Jetson Xavier platform with portable
TPU accelerators across various AI workloads, demonstrating its
effectiveness. The evaluation results show that Convergo outper-
forms state-of-the-art baselines, achieving over 90% satisfaction
of all three distinct SLO requirements simultaneously while
maintaining approximately 95% satisfaction for individual SLOs.
Furthermore, Convergo achieves these results with negligible
overhead, making it a promising solution for edge AI systems.

Index Terms—Edge Computing; Edge AI; On-Device AI
Scheduler; Edge Accelerators;

I. INTRODUCTION

Edge AI and edge inference systems are gaining significant
attention due to the increasing deployment of AI services and
the rapid development of pre-trained models, devices, and AI
accelerators [9], [19], [21], [28]. The primary benefit of edge
AI is its ability to offer low-latency inference services. By
placing small yet capable resources close to end-users and data
sources, edge computing facilitates AI computations directly
on the device [21], [22], [31]–[33]. This approach significantly
reduces reliance on cloud resources in remote data centers,
thereby minimizing data transfer overheads.

However, edge AI has an intrinsic challenge: it must operate
on resource-constrained devices while meeting specific (often
multiple) service-level objectives (SLOs), such as accuracy
targets, inference deadline goals, or throughput requirements.
To address this challenge and enhance edge AI’s performance,
various approaches have been developed [11], [17], [23], [30],
[41]. One approach is focused on enhancing AI inference

on edge accelerators using AI multi-tenancy [21], [22], [33],
which involves running multiple deep learning (DL) models
concurrently. Another commonly used approach relies on
model compression, which reduces the size of DL models,
making them suitable for execution on resource-constrained
edge devices [20], [38].

Nevertheless, these methods often address only a subset
of the challenges – optimizing either a single SLO or a
single accelerator type – without providing an integrated
solution that can handle multiple SLOs across heterogeneous
accelerators. As a result, they remain insufficient to tackle
the core challenges of edge AI, particularly when multiple
SLOs (e.g., accuracy, deadline, and throughput) must be met
concurrently. For example, with AI multi-tenancy, it is diffi-
cult to schedule AI tasks to meet their SLOs due to resource
heterogeneity, as different edge devices and AI accelerators
exhibit distinct performance characteristics and variations. A
scheduler on edge devices should have accurate knowledge of
the DL models’ performance, inference latency, and resource
consumption when running with other DL models. However,
having an accurate understanding of such characteristics is a
complex task.

Moreover, while on-device model compression may gen-
erate a model that meets multiple SLOs, it faces two main
obstacles. The first obstacle is the time and resource-intensive
nature of on-device compression as the compression pro-
cess demands substantial computing resources [27]. Given
the constrained edge resources, this process often results
in considerable scheduling delays. The second obstacle is
the inference accuracy of compressed models. Due to the
complexity of determining the right compression options [43],
it is challenging to create a compressed model that effectively
meets specific/complex SLOs.

In this work, we present Convergo, a novel AI scheduler
for resource-constrained edge devices that combines AI multi-
tenancy with heterogeneous accelerator management to meet
multiple and complex SLO requirements simultaneously. Un-
like previous studies [9], [11], [17], [21], [23], [30], [41] that
typically address one or two constraints, Convergo integrates
three critical capabilities – multi-tenancy, heterogeneous accel-
erator management, and multi-SLO prioritization – into one
cohesive solution. Convergo leverages a set of pre-trained DL
models for various real-world edge AI applications optimized

for different accelerators. It determines the best combinations
of pre-trained models considering accelerator heterogeneity
and resource constraints, facilitating the concurrent execution
of multiple DL models to meet various SLO requirements.
In particular, Convergo’s scheduling algorithm prioritizes AI
inference requests, imposes critical constraints based on SLO
requirements, and selects the best combinations of models to
ensure SLO satisfaction. Moreover, we further enhance the
adaptability of Convergo to address more challenging edge
AI use cases when newly pre-trained models are added and
required for AI inferences. To this end, Convergo utilizes
slack-aware minimal profiling and lightweight performance
prediction.

We implemented Convergo on the Jetson Xavier platform,
equipped with a Volta GPU (384 CUDA cores, 48 Tensor
cores) and multiple portable TPU accelerators. To assess
its performance, we conducted extensive evaluations across
three widely-used AI application categories: image classifi-
cation, object detection, and pose estimation. We generated
realistic AI inference workloads, with each request having
three distinct SLO requirements: accuracy, throughput, and
inference deadline. Evaluating Convergo against state-of-the-
art baselines [11], [30], our results show that Convergo not
only outperforms the baselines but also substantially improves
the ability to simultaneously meet multiple and complex SLO
requirements by leveraging heterogeneous AI accelerators and
enabling AI multi-tenancy. Specifically, Convergo achieves
a satisfaction rate of over 90% for meeting all three dis-
tinct SLO requirements concurrently, which is up to 37%
higher than the baselines, while maintaining approximately
95% satisfaction for individual SLOs. Moreover, the results
show that Convergo not only maintains high SLO satisfaction
but also makes the best use of any remaining device and
accelerator capacity to maximize inference accuracy when
device and accelerator resources are available. We also eval-
uated the overhead of Convergo, considering its operation
on resource-constrained edge devices. Our evaluation revealed
that Convergo requires just an additional 5% to 6% of mem-
ory and CPU resources and consumes approximately 530mW
of additional power, which are acceptable overheads for an
edge AI scheduler.

In summary, Convergo’s primary contribution is its holistic
approach to multi-tenancy, heterogeneous acceleration, and
multi-SLO coordination within the strict constraints of an
edge environment, thereby bridging a gap left by existing
approaches. Specifically, we make the following contributions:

1. Design and implementation of Convergo. We devel-
oped a lightweight AI scheduler on NVidia’s Jetson Xavier
platform, incorporating portable TPU accelerators. Convergo
effectively manages diverse AI workloads while adhering to
various SLO constraints.

2. Novel AI Scheduling Algorithm. We designed a novel
scheduling algorithm that orchestrates various AI applications
on heterogeneous AI accelerators (e.g., applications on both
GPUs and TPU accelerators). By enabling AI multi-tenancy
and utilizing different accelerators, this scheduling algorithm

Cloud Data Centers

VM VM VM

Edge
Node
Layer

(IoT &)
Edge

Device
Layer

Animal Transportation Environment

Sensing
Target

Edge C
om

puting

VM

Internet

Fig. 1. Edge Computing and Edge AI Architecture.

allows Convergo to simultaneously meet complex and diverse
SLO requirements.

3. Thorough performance evaluation of Convergo. We
conducted an in-depth performance evaluation of Convergo
on a real-world edge platform. Specifically, we analyzed its
performance across three key AI application requests, each
with distinct SLO requirements. Our evaluation encompassed
resource utilization, overhead, and adaptability to model un-
certainty (e.g., using unprofiled or unknown DL models for AI
inference processing).

The rest of this paper is organized as follows: §II describes
the background and motivation of this work. §III provides
the design of Convergo and detailed descriptions of its
components. §IV reports the performance evaluation results
of Convergo against state-of-the-art baselines. §V describes
related work, and finally, §VI concludes the paper.

II. BACKGROUND AND MOTIVATION

Edge Computing and Edge AI. Edge computing [24] is a
decentralized computing model that places small-scale com-
puting resources closer to data sources and end-users. Its
primary goal is to achieve low-latency data processing by
leveraging geographical proximity and protecting end-users’
privacy via minimized data transmissions to cloud data centers.

Fig. 1 illustrates the edge computing architecture, typically
composed of two layers: edge node and (IoT &) edge device
layers. As stated in §I, advances in small edge devices,
AI accelerators, and pre-trained models have enabled active
deployment of AI inference services (edge AI) directly on edge
devices (in the device layer) [9], [21]. Specifically, edge AI
enables the execution of AI models directly on edge devices
to provide low-latency AI inference capabilities (e.g., object
detection [18], [37], image/video processing [39], [40], [42])
to nearby users and to facilitate various operations related to
target sensing (the bottom of Fig. 1).

DenseNet161
(115MB)

ResNet18
(46MB)

ResNet50
(102MB)

SqueezeNet
(5MB)

VGG16
(553MB)

0
5

10
15
20
25
30
35
40

Av
g.

 T
hr

ou
gh

pu
t (

#I
nf

/S
ec

)
RPi 4
Nano

TX2
Xavier

0

20

40

60

80

100

Av
g.

 To
p-

1
Ac

cu
ra

cy

Avg. Top-1 Accuracy

Fig. 2. Inference Throughput vs. Accuracy of DL Models on Edge
Devices. The bar graphs indicate the inference throughput on four edge
devices (RPI4: Raspberry PI4, Nano: Jetson Nano, TX2: Jetson TX2, and
Xavier: Jetson Xavier NX), and the line shows the top-1 accuracy of the
models. The numbers in parentheses (on the x-axis) indicate the model size.

For the successful operation of edge AI, it is important
to satisfy multiple requirements simultaneously, including la-
tency (or deadline), throughput, and accuracy. Specifically,
inference latency is a critical aspect of edge AI, indicating
that edge devices should complete AI computations within a
specified time frame. However, this is challenging due to the
resource heterogeneity and constrained resources commonly
found in edge devices, often leading to varying processing
times and inference latencies. For example, Fig. 2 (bar graphs)
shows the inference throughput of DL models, which exhibits
significant variability across various edge devices, hardware
configurations, and accelerators. Moreover, given the large
number of existing pre-trained models available (e.g., models
for image classification and object detection), each model has a
unique combination of model size, accuracy, resource demand,
and latency characteristics, as also shown in Fig. 2.

An effective way to meet multiple SLOs is to develop
an on-device scheduler that can efficiently manage and pri-
oritize computing resources despite resource constraints and
heterogeneity. Furthermore, the scheduler’s capabilities need
to extend beyond resource management. For example, the on-
device scheduler should intelligently select the most appropri-
ate models for AI inference, balancing desired latency with
other constraints such as model size, resource availability, and
acceptable accuracy.
Limitations of Model Compression. Model compression
techniques may be considered a viable approach to facilitate
the execution of DL models on resource-constrained edge
devices. These techniques can reduce the size of DL models,
requiring fewer computing resources and offering shorter in-
ference latency. Still, model compression alone is insufficient
for edge AI and online DL model scheduling.

In edge AI, the diversity of SLOs, e.g., varying accuracy and
latency requirements, demands a scheduler that can create a
variety of compressed models to meet these specific SLOs.
This, however, poses additional challenges for AI scheduling
due to the time-consuming nature of online model compres-
sion, which causes significant delays [27]. Fig. 3 shows our
measurements of the compression overhead using two widely-
used techniques, Post-Training Quantization (PTQ) and model
pruning, on various DL models with the Jetson Xavier device.

MoS MoL
D-12

1
D-20

1
E-B

0
E-B

3
0

100

200

300

400

500

Ti
m

e
(S

ec
)

(a) Post Training Quant.
FloatPoint16
Dynamic Range
Full-Integer

MoS MoL
D-12

1
D-20

1
E-B

0
E-B

3
0

200

400

600

800

1000

Ti
m

e
(S

ec
)

(b) Model Pruning

Spar.(25%)
Spar.(50%)
Spar.(75%)

Fig. 3. Compression Overhead (Time) on Jetson Xavier. (a) Compression
overhead of three post-training quantization methods: Float16, Dynamic
Range, and Full Integer; and (b) overhead of the pruning method at different
sparsity levels (25%, 50%, and 75%). “MoS”: MobileNetV3Small, “MoL”:
MobileNetV3Large, “D-xxx”: DenseNet-xxx, “E-Bx”: EfficientNet-Bx.

For PTQ shown in Fig. 3(a), we observed that compression
times vary with the technique and model size. For example,
small models like MobileNetV3Small required 36s – 43s with
PTQ, whereas larger models like DenseNet201 took more
than 200s. Moreover, model pruning (Fig. 3(b)) consistently
resulted in longer compression times compared to PTQ.

While there are expected benefits of model compression,
e.g., reduced model size, lower resource demands, and faster
inferences, its high compression overhead is often unaccept-
able in on-device AI scheduling. Additionally, accuracy degra-
dation (the accuracy results are omitted due to page limits) is
another drawback. Our observations confirmed that accuracy
can vary significantly with different compression techniques,
with top-1 accuracy reductions ranging from 20% to 30% or
even more. For example, pruning EfficientNet-B0 at a 75%
sparsity level led to an about 30% drop in accuracy, and using
full integer PTQ on MobileNetV3Large resulted in an over
20% decrease in accuracy, consistent with prior work [27].

Motivation and Convergo Approach. Our main motivation
for this work is to develop a novel scheduler for resource-
constrained edge devices that can satisfy multiple SLOs for AI
inference tasks. We aim to create a scheduler capable of simul-
taneously meeting various SLOs, i.e., accuracy and throughput
requirements. To achieve this, we adopt the following design
policies for our new scheduler, Convergo.

First, considering the diversity of edge AI accelerators,
the scheduler must be capable of leveraging heterogeneous
accelerators simultaneously. Second, by utilizing these het-
erogeneous accelerators, the scheduler should maximize AI
multi-tenancy to enhance the likelihood of meeting multiple,
distinct SLO requirements. Third, because our target platform
is resource-constrained edge devices, the new scheduler should
be lightweight. Specifically, it should avoid computation-
heavy methods (e.g., on-device model compressions) and
efficiently determine suitable combinations of multiple model
executions to meet various SLOs. Finally, given the rapid pace
of development in new pre-trained AI models, the scheduler
should be adaptable enough to handle performance uncer-
tainties associated with unknown models without relying on
extensive and heavy profiling.

DL Model
Selector

Scheduling Decision
(meeting multiple SLOs)

 DL Model
 Pool Model#1

Model#2
…

M
(Model)

<T, M>

T (Infer. Task)

Infererence Task Queue

Scheduling Engine

Perf.
DB

Perf.
 Model

Perf.
Update

Perf.
Esti-

mation

Performance Engine

CPU
GPU

TPU
Accelerator

Exec. Engine

… Online Execution
Monitor

Resource
Usage,

Inference
progress

Update
Performance/

Resource Stats.
AI Tasks

<T, M, Plan>

Requirement
(acc: 95%,
DL: 500ms)

Output

Inference
Requests

(Initial)
Offline

Profiling

1 2

3

Fig. 4. Overview of Convergo.

III. DESIGN OF Convergo

This section begins with an overview of Convergo, fol-
lowed by a detailed description of its components.

A. Convergo Overview

We design Convergo with four key principles: leveraging
heterogeneous AI accelerators, maximizing AI multi-tenancy,
maintaining a lightweight framework, and ensuring adaptabil-
ity, as discussed in §II. These policies guide AI task scheduling
to meet multiple SLOs for edge AI.

Fig. 4 illustrates the overall architecture of Convergo,
including three main components executed on edge devices:
1 Performance Engine, 2 Scheduling Engine, and 3 Ex-

ecution Engine. Please note that while all components are
meticulously designed following the four key policies, each
has a distinct primary function: the performance engine is
mainly for maximizing AI multi-tenancy and partially for
its adaptability, the scheduling engine ensures lightweight
operation and adaptability, and the execution engine enables
Convergo to leverage heterogeneous accelerators, with a focus
on GPUs on edge devices and TPU accelerators.
1 Performance Engine. The performance engine contains a

performance DB and a performance model. The performance
database (DB) holds various system- and model-level statistics
related to DL model executions, including inference time and
resource utilization. This DB is initially built with offline
profiling but is constantly updated with runtime datasets as
actual DL models are executed on edge devices.

The performance model provides information about the
latency and throughput of specific models when they are
run on edge devices under various conditions (e.g., execu-
tion with other models). Moreover, Convergo is designed to

perform scheduling operations with unknown models, which
are models not yet profiled, by employing two approaches: 1)
slack-aware minimal profiling, and 2) lightweight performance
estimation, which are further discussed in §III-E.
2 Scheduling Engine. This engine aims to optimize the

scheduling plan for inference requests, ensuring that multiple
SLOs can be met simultaneously. This component incorporates
a DL model pool, a DL model selector, and a scheduling
decision module.

The DL model pool includes various pre-trained DL models
and their static attributes (e.g., size and accuracy). The DL
model selector then identifies models that are likely to meet
designated SLOs. Subsequently, the model execution plan is
developed by the scheduling component, detailed in §III-B.
Convergo employs various performance metrics and forecasts
(e.g., accuracy, throughput, resource usage) to create this plan,
determining the types of models, their start times, and the AI
accelerators for the executions.
3 Execution Engine. The execution engine performs AI

inference tasks by executing the DL models on heterogeneous
edge accelerators. The model executions follow the plan
created by the scheduling engine, which determines where and
when DL models should be deployed, including resources like
GPUs and TPU accelerators, to ensure efficient task execution.

Moreover, while the models are running, an online execution
monitor (bottom right component in Fig. 4) collects runtime
statistics on resource usage and model progress, and the mon-
itor continually updates this information to the performance
DB within the performance engine.

B. Convergo Scheduling

We discuss Convergo’s scheduling algorithm in detail.
User Requests for AI Inference. In our design, we assume
that multiple users submit various requests to Convergo.
A user request refers to an AI inference task submitted
by users, with each request having its own multiple SLOs
that need to be satisfied simultaneously. For example, each
request (Ri) contains three specific sub-requirements, denoted
as < Thi, Acci, Di >, where Thi represents the throughput
goal, Acci is the accuracy target, and Di is the deadline of
the request (Ri).
Priority Decision for User Requests. Requests submitted to
Convergo are placed in a priority queue, represented as R =
{R1, R2, R3, ...Rn}, where n is the number of requests in the
priority queue. Each request (R) includes its arrival time (tarr)
and its associated SLOs, such as a deadline (D). Users can
also specify a weight (w) of each request when submitting
multiple requests to our scheduler. The default value for w
is 1, but users have the option to assign weights of up to 10
for requests that require urgent processing. Convergo assigns
priority to a request (wi) based on the following equation.

Priorityi =
Di − (tcurr − tarr,Ri

)

wi
, (1)

where Di represents the deadline for request Ri, tcurr denotes
the current time, tarr,Ri is Ri’s arrival time, and wi is the user-

Algorithm 1 Convergo Scheduling
Input: R = {R1, R2, ..., Rn}: User Request Arrivals. Each

Ri has three specific goals: Throughput, Accuracy, and
Deadline.

Output: Scheduling results
1: R = {R0, R1, ...Rn} arrive in Convergo queue
2: function Convergo SCHEDULING(R)
3: while Ri in Convergo queue do
4: Priorityi ← Equation-(1)
5: PRIORITYQUEUE.PUT(Priorityi)
6: end while
7: PRIORITYQUEUE.REARRANGE()
8: while Rk ← PRIORITYQUEUE.GET() do
9: C1: Equation-(2)

10: C2: Equation-(3)
11: C3: Equation-(4)
12: //MC : A set of candidate models for Rk

13: if MC ← min(SOLVE(Mall, C1, C2, C3)) then
14: // Create model execution plan via Algo. 2
15: P ← MODELEXECUTIONPLAN(Mcandi)
16: end if
17: if P then
18: // Execute MC according to P
19: INVOKE(P)
20: else
21: // No feasible scheduling plan for Rk

22: SEND MESSAGE(“infeasible request”, Rk))
23: end if
24: end while
25: end function

assigned weight. Moreover, within the priority queue, requests
are organized by their priority, which updates dynamically
with new request arrivals.
Convergo Scheduling Algorithm. Algo. 1 describes the
Convergo’s scheduling mechanism. As discussed in §III-A,
Convergo leverages multiple pre-trained models (in “DL
model pool” in Fig. 4) and must select candidate models that
fullfill all the requirements. Specifically, Convergo creates
three constraints (C1, C2, and C3), shown in lines 9 to 10
of Algo. 1.

The first constraint (C1) is the throughput requirement of Ri,
and candidate models will be chosen based on this equation.

n∑
j=1

Mj(Th)× tj ≥ Thi, (2)

where Mj(Th) represents the throughput statistics of jth

model (Mj), tj denotes the execution time of Mj .
Given the models that can meet the throughput requirement,

Convergo uses the second constraint (C2) to select models
that meet the accuracy requirement. Equation-(3) is used to
calculate the overall model accuracy, and only models with an
overall accuracy higher than Aj will be selected. In equation-

(3), Mj(Acc) represents the accuracy of Mj .∑n
j=1Mj(Th)× tj ×Mj(Acc)∑n

j=1Mj(Th)
≥ Acci, (3)

Given the model selected for throughput and accuracy
requirements, Convergo now needs to apply the third con-
straint (C3) to determine the models that can satisfy all the
requirements. This step tests whether the models can meet the
deadline (Di) requirements by calculating

n∑
j=1

tj ≤ Di. (4)

By using these three constraints, Convergo identifies the
candidate models (MC) that can meet Ri’s SLOs. In scenarios
where multiple DL models, potentially leading to various
execution plans, are available for processing Ri, Convergo
prioritizes the models with the shortest execution time as
shown in line 13. This approach enables Convergo to reveal
slack-time for managing unknown models via slack-aware
minimal profiling, a method detailed further in §III-E.

Once MC is identified, Convergo creates a model exe-
cution plan (P), composed of multiple small DL execution
batches. The procedure for creating a model execution plan is
explained in Algo. 2, further detailed in §III-C. After creating
the model execution plan for Ri, the system will invoke
the execution of DL models based on P (a series of small
execution batches in §III-D).

C. Creating Model Execution Plan

Convergo develops a model execution plan (P), leveraging
MC (from Algo. 1), to enable the concurrent use of hetero-
geneous accelerators like GPUs and TPUs. Therefore, it is
important to determine which models should be executed on
which AI accelerators. To this end, Convergo has two policies
for making this decision:
1) The total CPU and memory usage of all enabled DL models

must not exceed the device’s available resources.
2) Given that an edge device can support two different types of

AI accelerators (e.g., GPUs and TPUs), TPU accelerators
have higher priority over GPUs for model executions.

These policies are designed to optimize simultaneous model
executions based on our observation that running DL models
on TPUs, rather than GPUs, typically results in lower memory
and CPU consumption. The high GPU consumption is due to
their design, particularly on Jetson devices, where GPUs share
an integrated memory subsystem with the host device, leading
to increased memory usage during DL model executions.

We make specific assumptions to develop model execution
plans on AI accelerators. For instance, we assume only one
model can be deployed on a TPU, unlike multiple models
on GPUs, due to the limited benefits of running multiple DL
models on an edge TPU [14]. Additionally, edge devices can
support 2 to 4 portable TPU accelerators, and their resources
are sufficient to run all deployed models.

Algorithm 2 Creating Model Execution Plan
Input: MC = {m1,m2, ...,ml}: Candidate DL models (m)

for processing an user request (R)
Output: P: Execution plan: A set of execution batches, each

containing DL models on edge TPUs and edge GPUs,
along with each batch’s start and end times.

1: function MODELEXECUTIONPLAN(MC)
2: P ← {} // initialize execution batches
3: while |MC | do
4: // models on edge GPU and edge TPUs w/i a batch
5: MTPU ← {}, MGPU ← {}
6: // place models first edge TPUs, n: # of edge TPUs
7: for i ∈ [1,min{n, |MC |}] do
8: m←MC .pop(0)
9: MTPU .add(m)

10: CPUtot += m(CPU)
11: MEMtot += m(MEM)
12: end for
13: // place next models on edge GPU
14: for i ∈ [0, |MC |] do
15: CPUtot += MC [0](CPU)
16: MEMtot += MC [0](MEM)
17: if CPUtot ≤ CPUdev and
18: MEMtot ≤MEMdev then
19: MGPU .add(MC .pop(0))
20: else
21: // cannot run more models in this batch
22: // due to resource constraints
23: break
24: end if
25: end for
26: // calculate duration of this execution batch
27: tend ← tstart +max(duration(MGPU ,MTPU))
28: // single batch execution plan is completed
29: P .add(tstart, tend,MTPU ,MGPU)
30: tstart ← tend
31: end while
32: return P
33: end function

Algo. 2 illustrates how Convergo creates model execution
plans. Specifically, a P to process a R can be composed of
several small execution batches. Each execution batch includes
the start (tstart) and end (tend) times, along with the models to
be deployed on both accelerators. The input for this algorithm
comprises the selected DL models (MC) for processing a R.

Given that TPU accelerators have higher priority than GPUs,
the first n models (n is the number of TPU accelerators) are
initially assigned to the TPUs, as shown from lines #7 to
#12. Convergo also calculates the total resource consump-
tion (e.g., CPUtot, MEMtot) for running models on TPUs.
Subsequently, Convergo assigns DL models to GPUs based
on the availability of resources. As shown from lines #14
to #25, DL models are sequentially assigned to GPUs until
the cumulative resource consumption reaches the device’s

GPU

TPU1

TPU2 …

…

…

…

…

…
Model

Batch
#1

Batch
#n

Duration of a Batch

Duration of Req. #1 (≤ D) Request #2 …

Batch#2

1

Fig. 5. Model Executions with Multi-Batches and Multi-Tenancy in
Convergo’s scheduling.

maximum capacity of CPU and/or memory. The models
assigned (whether on TPUs or GPUs) constitute the small
batch, for which Convergo calculates the start time and total
duration, determined by the longest-running model among
those selected. This batch is then incorporated into the P in
line #29. Convergo continues to generate batches for P as
long as the DL model in MC exists. Once all models have
been assigned with defined start and end times, the final P is
created and returned to Algo. 1.

D. Concurrent DL Model Executions

Convergo executes batches within P sequentially. Fig. 5
shows an example of model executions within P when an
edge device has a GPU and two TPU accelerators. Each TPU
runs one model per batch, while the GPU can execute multiple
DL models within the same batch. Please note that the number
of models the GPU runs per batch varies based on the models’
resource requirements and sizes. For example, in the first
batch of R1 in Fig. 5, the GPU runs three models, while in
the second batch of R1, it executes two models. Moreover,
the execution duration for each batch may vary since it is
determined by the longest-running model within the batch.
Furthermore, Convergo must ensure that the total duration of
executing all batches in P (or processing R) remains shorter
than the R’s deadline (D).

E. Supporting Unknown DL Models

Convergo relies on pre-profiled models in the performance
engine for scheduling. However, Convergo should also be
able to make a scheduling plan when the DL model pool
contains unknown (or unprofiled) models. For example, new
pre-trained models can be added to the model pool, or users
may want to use specific models to process their requests. To
this end, Convergo employs two approaches to obtaining the
models’ performance data: slack-aware minimal profiling and
performance estimation.
Slack-aware Minimal Profiling. Convergo can perform min-
imal profiling during slack (idle) times, which occur between
the end of the previous request and the start of the next
request. We observed that slack times often exist due to
the dynamics of request arrivals and Convergo’s scheduling
mechanism (specifically model selection in §III-B). For ex-
ample, Convergo always chooses models with the shortest

Table 1. AI Applications and DL Models Used For Evaluation.

AI Application Edge
Acceler. Pre-trained DL Models Size

(MB)
Num.
Layers

Image
Classification

GPU

EfficientNet [36] 5.4 5
Inception-v1 [34] 6.4 22
MobileNet-v2 [29] 3.4 20
SqueezeNet [16] 1.3 15

TPU

EfficientNet 6.8 7
Inception-v1 7.0 22
Inception-v3 [35] 12.0 48
MobileNet-v1 [15] 1.6 28

Object
Detection

GPU
EfficientNet 4.5 5
MobileNet-v2 6.5 20
YOLOX [12] 5.4 11

TPU
EfficientNet 7.6 18
MobileNet-v1 7.0 28
MobileNet-v2 6.6 20

Pose
Estimation

GPU
MobileNet-v1 [15] 8.2 28
MoveNet [3] 5.6 25
PoseNet [25] 4.3 23

TPU
MoveNet 7.5 25
PoseNet-MobileNet [25] 1.5 23
PoseNet-ResNet [25] 24.4 18

execution time. This approach potentially enables Convergo
to complete user requests before their deadlines, leveraging
the slack time to perform minimal profiling of unknown mod-
els. This profiling collects basic performance data, including
resource consumption, accuracy, throughput, and latency. The
duration or iterations of executing the unknown model vary
depending on the availability of slack times.
Performance Estimation. We developed a performance esti-
mator for unknown DL models using Random Forest (RF).
This performance estimator is useful when slack time is
unavailable. To build this model, we utilize static information
from existing profiled models in the performance engine
(in Fig. 4). Features include model size, memory and CPU
requirements, accuracy, latency, and throughput.

While the above two approaches allow Convergo to cre-
ate scheduling plans for unknown models, these plans may
initially be inaccurate, potentially leading to SLO violations.
However, as illustrated in Fig 4, the online execution monitor
captures all execution results, which are then updated in
the performance engine. As more executions are performed,
more accurate performance data is stored in the performance
DB, enabling the creation of future scheduling plans with
greater accuracy. In §IV, we conduct a detailed evaluation
of Convergo’s performance when using unknown models to
validate the effectiveness of these approaches.

F. Implementation of Convergo

The prototype of Convergo has been implemented on
Nvidia’s Jetson Xavier [4], which is equipped with multiple
Coral TPU accelerators [1]. Jetson Xavier is an edge device
equipped with a 6-core Carmel CPU, 8GB of RAM, and a
Volta GPU with 386 Tensor Cores for AI operations. Coral
TPU accelerator is a portable AI accelerator, delivering 4
TOPS at 2W of power consumption.

Convergo is developed using approximately 2.5K lines
of Python code and incorporates various libraries, including
PuLP [5] for solving linear programming problems. Convergo

Table 2. Accuracy, Throughput, and Latency (Deadline) Requirements
for Evaluated Workloads. “Accuracy”: “Top-1 Accuracy,” “Throughput”:
“Number of Inferences per Second,” “Latency (DL)”: “Latency (Deadline)

in Second.”

AI App. Num. of
Requests

Range of SLOs
Accuracy Throughput Latency (DL)

Img. Class.
500

75% – 90% 500 – 2500 0.1s – 1.5s
Obj. Detect. 73% – 89% 500 – 2500 0.1s – 1.5s
Pose Est. 70% – 83% 500 – 2500 0.1s – 2s

supports various AI applications by leveraging two DL frame-
works: Tensorflow [8] for GPU-based inference and TFLite
[2] for TPU-based inference. Because TFLite is the only
framework that supports inference tasks on TPUs on Jetson
Xavier or other edge devices [14], we must use two different
frameworks to enable support for both GPUs and TPUs.
Convergo also supports other frameworks like PyTorch [26]
and TensorRT [7]. Lastly, Convergo makes use of Redis [6]
to manage user requests effectively, ensuring their seamless
integration into the scheduling process.

IV. EVALUATION RESULTS OF Convergo

A. Evaluation Setup

Edge Device and AI Accelerators. We conducted our eval-
uation using Jetson Xavier as the primary platform and aug-
mented it with two TPU accelerators to assess the performance
of Convergo and other baselines. These two TPUs were
connected to the Jetson Xavier via the USB interface. Our
decision to use two TPUs aligns with recommendations from
prior research [14], which showed that two TPUs often provide
better performance gains than three or four.
Evaluated AI Applications. To evaluate Convergo’s per-
formance, we employed three edge AI applications: image
classification, object detection, and pose estimation. These
applications use a variety of pre-trained models listed in Table
1. Specifically, image classification involves eight models, with
four tailored for GPU and four for TPU inferences. Even when
models share the same architecture (e.g., Inception-v1 [34]
for both GPU and TPU in the image classification category),
they are individually optimized for each type of accelerator.
For object detection and pose estimation, we use three GPU
models and three TPU models for each, respectively.
Workload Generation. Our evaluation workloads combine all
three above AI applications, with each request being randomly
generated to assess Convergo under more realistic use cases.
The evaluation workloads consist of a set of 500 requests
generated using the Poisson distribution. Each request within
these workloads has specific accuracy, throughput, and latency
(deadline) requirements, which are randomly selected from
the ranges detailed in Table 2. Moreover, we conducted the
evaluation with multiple iterations with 10 different workloads
to mitigate the impact of outlier results.
Baselines. To evaluate the performance of Convergo, we
employed two state-of-the-art baselines: SLO-MAEL [30] and
Kalmia [11]. SLO-MAEL is built upon a minimum-average-
expected-latency (MAEL) scheduling algorithm by integrating

Meet All Accuracy Throughput Deadline
0

20

40

60

80

100

M
ee

t R
at

io
 (%

)
Convergo SLO-MAEL Kalmia

Fig. 6. SLO Satisfaction Results. “Meet All” indicates the results when all
three requirements are met. The other three – “Accuracy,” “Throughput,” and
“Deadline” – represent the satisfaction rate for each individual requirement.

SLO awareness into its operations. SLO-MAEL uses a dual-
scoring mechanism where tasks are evaluated based on both
expected latency and their adherence to SLOs. The scheduler
prioritizes tasks that are most likely to violate their SLOs,
trying to ensure that critical tasks are processed within their
required deadlines. Additionally, SLO-MAEL incorporates
preemptive scheduling, allowing it to interrupt and reprioritize
ongoing tasks based on the degree of SLO violation.

Kalmia [11] is a QoS-aware scheduler designed to manage
heterogeneous DNN inference tasks on edge servers via a
mix of preemptive and context-aware scheduling strategies to
optimize both task timeliness and system throughput. AI tasks
are categorized into urgent and non-urgent types. For urgent
tasks, it enables preemptive scheduling to give them higher
processing priority, while non-urgent tasks are used to increase
resource utilization by leveraging slack time.

B. Evaluation Results

We now report the performance evaluation results of
Convergo and the baselines.
SLO Satisfaction. Fig. 6 shows the SLO satisfaction results of
Convergo and the baselines. Each request has distinct accu-
racy, throughput, and deadline requirements. We measured: (1)
“Meet All”, which is the success rate when all requirements
were met; and (2) the satisfaction rate for each individual
requirement (e.g., “Accuracy,” “Throughput,” and “Deadline”,
which are also shown in the graph).

Convergo achieved over 91% SLO satisfaction by meeting
all three requirements simultaneously, which is significantly
higher than the other baselines. Additionally, Convergo out-
performed the other baselines by achieving high satisfaction
rates for each individual requirement: 93% for accuracy, 95%
for throughput, and 98% for deadlines met. Such a high SLO
satisfaction rate is primarily due to the efficacy of Convergo’s
scheduling algorithm, which enables the simultaneous execu-
tion of multiple AI models on different AI accelerators (e.g.,
models on both GPUs and TPU accelerators). Convergo’s
multi-constraint design highlights its novelty relative to sim-
pler solutions that focus on a single metric. By contrast,
the baselines are primarily designed to meet either deadline
or throughput requirements, missing many multi-SLO con-

WL#
1

WL#
2

WL#
3

WL#
4

WL#
5

WL#
6

WL#
7

WL#
8

WL#
9

WL#
10

0

2

4

6

8

10

Ov
er

-S
at

isf
ie

d
Ac

c.
 (%

)

Fig. 7. Over-Satisfied Inference Accuracy (%) for All 10 Evaluated
Workloads. For example, 8.3% of WL #1 means that Convergo’s accuracy
achievement is, on average, 8.3% higher than the requirements

siderations. Hense, the baselines’ satisfaction rate for “Meet
All” is less than 60% in Fig. 6. Additionally, they showed a
satisfaction rate of less than 70% for the accuracy requirement
and less than 80% for throughput requirements.
Over-Satisfied Inference Accuracy. We also measured the
over-satisfied accuracy (defined as how much the actual ac-
curacy surpassed the requirement) to demonstrate Convergo’s
ability to maximize accuracy while meeting throughput and
deadline requirements. As shown in Fig. 7, on average,
Convergo provided 7% higher accuracy than required across
the 10 evaluated workloads. We observed that Convergo
provided over 8% over-satisfied accuracy for 4 of the evaluated
workloads. These results confirm that Convergo not only
achieves a high SLO satisfaction rate but also exceeds accuracy
requirements in many cases, highlighting its additional ability
to provide better quality of service (QoS).
Analysis of SLO-missed Cases. We analyzed how close the
system came to meeting SLOs when they were missed. For
the accuracy miss cases, Convergo’s results were only 1.3%
below target accuracy; in contrast, the baselines were about
8% lower, confirming that Convergo’s accuracy achievements
are much closer to its target accuracy. For the deadline miss
cases, Convergo processed the missed jobs using over 58%
of the request deadlines. However, SLO-MAEL processed the
requests with 97% extra time over the deadline, and Kalmia
used 134% extra time over the deadlines. These results showed
that Convergo’s QoS degradation due to the missed accuracy
requirement is negligible, and Convergo was able to complete
the requests much earlier than the other baselines (even when
the deadlines were not met).

However, the results measuring the gap between the
achieved throughput and the target throughput (when the
throughput requirements were not met) showed similar results
in all three approaches. All three approaches showed 18% to
20% of missed throughput for the error cases.
Resource Utilization of Edge Devices. Fig. 8 reports the
resource utilization and power consumption of the Jetson
Xavier device for Convergo versus the baselines. In partic-
ular, Convergo increased CPU utilization by up to 12% and
memory utilization by up to 10% over the baselines. This
increased utilization is mainly due to Convergo’s sophisticated

CPU MEM
0

20

40

60

80

100
Ut

iliz
at

io
n

(%
)

(a) Resource Utilization
Convergo
SLO-MAEL
Kalmia

Convergo S-MAEL Kalmia
0

1000

2000

3000

4000

5000

Po
we

r U
se

 (m
W

)

(b) Power Consumption

Fig. 8. Resource Utilization and Power Consumption.

Table 3. Convergo Scheduler Overhead. The scheduler overhead was
calculated from extra CPU (%), MEM (%), and power (mW) consumption.

Average Std Dev.
Extra CPU Consumption 6.3% 1.6

Extra Memory Consumption 4.9% 1.1
Extra Power Consumption 527.2mW 45

scheduling operations, which improved throughput and met
SLO requirements. However, with respect to power consump-
tion, Convergo consumed 700mW to 1500mW more power
compared to the baselines. Despite Convergo’s significant
improvements in other metrics (e.g., multi-SLO satisfactions),
its scheduling algorithm is more complicated and requires
extra optimizations and operations that can consume more
power. Therefore, improving power efficiency will be our next
step in enhancing Convergo.
Overhead of Convergo. Table 3 details the extra re-
source consumption (e.g., scheduler’s resource consumption)
of Convergo beyond normal inference. On average, Convergo
required 4.9% and 6.3% CPU and memory for schedul-
ing operattions, respectively. Additionally, it consumes about
527mW extra power for scheduling operations, which is
less than 10% of the total power consumption of the Jet-
son Xavier device. We consider this overhead acceptable
given Convergo’s performance gains and unique multi-SLO
scheduling approach.
Evaluation with ‘Unknown’ AI Models. The evaluations
we performed so far relied on ‘fully’ profiled models for AI
processing. However, Convergo is also designed to process AI
applications with unknown (unprofiled) models, as discussed
in §III-E. Therefore, we evaluated Convergo’s performance
with unknown AI models. In this experiment, we removed
two models from each AI application in Table 1 in §IV-A
(e.g., one model for GPU and another one for TPU). In
total, we used 6 out of 21 models (about 30%) as unknown
models. Additionally, this evaluation was performed with three
randomly generated workloads, each with 500 requests.

SLO-satisfaction results of Convergo with the unknown
models are shown in Fig. 9. The green bars represent results
with all-profiled models (the same results as in Fig. 6 earlier in
this section), and the red bars represent results with unknown
models. As expected, we observed performance degradation
with unknown models. For example, meeting all requirements

Meet All Accuracy Throughput Deadline
0

20

40

60

80

100

M
ee

t R
at

io
 (%

)

Convergo Convergo (w/ Unknown)

Fig. 9. SLO Satisfaction Results with ‘Unknown’ Models. Green bars
(left): SLO satisfaction rate with all profiled models (also in Fig. 6). Red bars
(right): SLO satisfaction rate with 30% of unknown models.

(“Meet All”) with unknown models had a 6.4% lower sat-
isfaction rate. Other metrics, such as accuracy, throughput,
and deadline miss rate, showed 6.3%, 3.5%, and 9.2% lower
satisfaction rates, respectively. While there is performance
degradation, we believe this is acceptable given that 30% of
the models were unprofiled.

We further analyzed the frequency of SLO misses when
processing the evaluated workloads. Fig. 10 shows the SLO
miss frequencies for one evaluated workload. The blue dots
indicate “accuracy miss” cases, the red dots indicate “through-
put miss” cases, and the yellow dots indicate “deadline miss”
cases. As shown in the graph, SLO miss cases often occurred
in earlier requests (from the 1st to the 100th request), with
fewer violations in later requests. These results suggest that
early violations help improve the performance DB/model in
Convergo for more accurate scheduling and demonstrate
the efficacy of Convergo’s minimal slack-aware scheduling
and performance estimation. As Convergo processed more
requests, it was able to reduce violation cases and maintain
a high overall SLO satisfaction rate. It is worth noting that
Convergo’s performance with unknown models still showed
a higher SLO satisfaction rate compared to the two baselines
with all-profiled models, highlighting its adaptability.

V. RELATED WORK

AI on Resource-Constrained Edge Devices. On-device AI
inference serving often struggles to meet SLOs due to resource
constraints, and multiple approaches have been proposed to fa-
cilitate on-device AI inference [13], [20], [23], [24], [38], [42].
Han et al. [13] and Lee et al. [20] explored efficient model
compression techniques to reduce the computational load on
edge devices. While these methods shrink model size and
inference time, they often degrade performance under strict
SLOs (e.g., meeting both accuracy and latency) [27]. In con-
trast, Convergo optimizes model selection based on multiple
SLO constraints, ensuring accuracy while meeting other SLOs
like throughput and deadlines. Xie et al. [23] and Zhang et al.
[42] proposed on-device inferencing frameworks that distribute
heavy inferencing workloads across multiple devices. How-
ever, these approaches face high variability in model accuracy
and latency due to heterogeneous edge hardware. Convergo

0 50 100 150 200 250 300 350 400 450 500
Request Sequence

Accuracy
Miss

Throughput
Miss

Deadline
Miss

SL
O

Er
ro

rs

Fig. 10. Frequency of SLO-misses Occurred in an Evaluated Workload
with ‘Unknown’ Models.

tackles this by using a heterogeneous scheduling engine to
dynamically select the best models and accelerators for each
task, balancing accuracy, latency, and throughput. Wang et
al. [38] introduced an adaptive inferencing that dynamically
compress models based on resource availability. While this
system reduces latency, they struggle to consistently meet
multiple SLOs, such as latency and accuracy together, due to
compression-induced accuracy drops. In contrast, Convergo
uses a multi-SLO-aware scheduling algorithm to prioritize
inference tasks and adapt to changing conditions, ensuring
high SLO satisfaction.
Edge AI Schedulers. Several edge AI schedulers are designed
to meet SLOs [9]–[11], [21], [30], but they often fail to
address multiple SLOs simultaneously. For instance, SLO-
MAEL [30] prioritizes tasks based on expected latency and
SLO violation risks but lacks mechanisms for managing het-
erogeneous resources and multi-SLO requirements, leading to
suboptimal performance under complex SLOs (as shown in
§IV). Convergo addresses these gaps by leveraging hetero-
geneous AI accelerators to meet multiple SLOs concurrently.
Kalmia [11] and Dělen [21] optimize inference throughput
and resource utilization but often at the expense of other
critical SLOs like accuracy and deadlines. However, Convergo
balances these conflicting requirements, ensuring all SLOs are
met without compromising overall performance. Clipper [10]
and Masa [9] focus on low-latency prediction serving and
multi-DNN inference but lack flexibility for multi-SLO re-
quirements in heterogeneous edge environments. Convergo’s
multi-tenancy and model selection capabilities allow it to
optimize multiple SLOs simultaneously, even in resource-
constrained settings.

VI. CONCLUSION
In this paper, we presented Convergo, a new edge AI sched-

uler designed to meet multiple and complex SLOs concur-
rently. Unlike prior solutions that focus on a narrower scope,
Convergo’s unique approach fuses heterogeneous device man-
agement, AI multi-tenancy, and multi-SLO prioritization into
one framework. The scheduling algorithm prioritizes inference
requests, applies critical constraints, and selects the best model
combinations for concurrent executions. Implemented on the
Jetson Xavier platform with TPU accelerators, Convergo was
evaluated using realistic workloads spanning across various

AI applications. Our evaluation, compared to state-of-the-art
edge AI schedulers, shows that Convergo achieved over 90%
satisfaction rate for concurrent SLOs, significantly outper-
forming the baselines. Additionally, we assessed its overhead
and resource utilization, confirming that Convergo has an
acceptable overhead for deployment on resource-constrained
edge devices, demonstrating its effectiveness for edge AI.

ACKNOWLEDGMENT

The authors thank Jacob Stein for his contributions during
the early phase of this work. This research was partially
supported by the U.S. Department of Agriculture (USDA)
under Grant No. 2021-67019-34342 and the National Science
Foundation (NSF) under Grant No. CNS-2416214. Any opin-
ions, findings, conclusions, or recommendations expressed in
this publication are those of the authors and do not necessarily
reflect the views of the USDA or NSF. This work was also
partially supported by the Ministry of Education, Culture,
Research, and Technology, Directorate General of Higher
Education, under Grant No. 107/E5/PG.02.00.PL/2024.

REFERENCES

[1] Coral TPU USB Accelerator datasheet. https://coral.ai/docs/accelerator/
datasheet/.

[2] ML for Mobile and Edge Devices - TensorFlow Lite. https://
www.tensorflow.org/lite.

[3] MoveNet: Ultra fast and accurate pose detection model. https://
www.tensorflow.org/hub/tutorials/movenet.

[4] NVIDIA Jetson Xavier. https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-xavier-series/.

[5] Optimization with PuLP. https://coin-or.github.io/pulp/.
[6] Redis – The Real-time Data Platform. https://redis.io/.
[7] TensorRT Command-Line Wrapper: trtexec. https://github.com/

NVIDIA/TensorRT/tree/main/samples/trtexec.
[8] Martı́n Abadi and et al. TensorFlow: A System for Large-Scale Machine

Learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Savannah, GA, USA, November, 2016.

[9] Bart Cox, Jeroen Galjaard, Amirmasoud Ghiassi, Robert Birke, and
Lydia Y. Chen. Masa: Responsive Multi-DNN Inference on the Edge.
In IEEE International Conference on Pervasive Computing and Com-
munications (PerCom), Kassel, Germany, March, 2021.

[10] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. Clipper: A Low-Latency Online
Prediction Serving System. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Boston, MA, USA, March,
2017.

[11] Ziyan Fu, Ju Ren, Deyu Zhang, Yuezhi Zhou, and Yaoxue Zhang.
Kalmia: A Heterogeneous QoS-aware Scheduling Framework for DNN
Tasks on Edge Servers. In IEEE Conference on Computer Communica-
tions (INFOCOM), London, United Kingdom, May, 2022.

[12] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. YOLOX:
Exceeding YOLO Series in 2021. CoRR, abs/2107.08430, 2021.

[13] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. EIE: Efficient Inference Engine on
Compressed Deep Neural Network. In ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), Seoul, South Korea, June,
2016.

[14] Jianwei Hao, Piyush Subedi, Lakshmish Ramaswamy, and In Kee Kim.
Reaching for the Sky: Maximizing Deep Learning Inference Throughput
on Edge Devices with AI Multi-Tenancy. ACM Transactions on Internet
Technology (TOIT), 23(1):2:1–2:33, 2023.

[15] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. CoRR, abs/1704.04861, 2017.

https://coral.ai/docs/accelerator/datasheet/
https://coral.ai/docs/accelerator/datasheet/
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/hub/tutorials/movenet
https://www.tensorflow.org/hub/tutorials/movenet
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://coin-or.github.io/pulp/
https://redis.io/
https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec
https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec

[16] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song
Han, William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <1MB model size. CoRR,
abs/1602.07360, 2016.

[17] Joo Seong Jeong, Jingyu Lee, Donghyun Kim, Changmin Jeon, Changjin
Jeong, Youngki Lee, and Byung-Gon Chun. Band: Coordinated Multi-
DNN Inference on Heterogeneous Mobile Processors. In The Annual
International Conference on Mobile Systems, Applications and Services
(MobiSys), Portland, Oregon, USA, June, 2022.

[18] Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin
Liu. Flexible High-resolution Object Detection on Edge Devices with
Tunable Latency. In International Conference on Mobile Computing and
Networking (MobiCom), New Orleans, Louisiana, USA, October, 2021.

[19] Achintya Kundu, Laura Wynter, Rhui Dih Lee, and Luis Angel D.
Bathen. Transfer-Once-For-All: AI Model Optimization for Edge. In
IEEE International Conference on Edge Computing and Communica-
tions (EDGE), Chicago, IL, USA, July, 2023.

[20] Hyunseung Lee, Jihoon Hong, Soosung Kim, Seung Yul Lee, and Jae W.
Lee. A Memory-Efficient Edge Inference Accelerator with XOR-based
Model Compression. In ACM/IEEE Design Automation Conference
(DAC), San Francisco, CA, USA, July, 2023.

[21] Qianlin Liang, Walid A. Hanafy, Noman Bashir, Ahmed Ali-Eldin,
David E. Irwin, and Prashant J. Shenoy. Dělen: Enabling Flexible
and Adaptive Model-serving for Multi-tenant Edge AI. In ACM/IEEE
Conference on Internet of Things Design and Implementation (IoTDI),
San Antonio, TX, USA, May, 2023.

[22] Qianlin Liang, Prashant J. Shenoy, and David E. Irwin. AI on the
Edge: Characterizing AI-based IoT Applications Using Specialized
Edge Architectures. In IEEE International Symposium on Workload
Characterization (IISWC), Beijing, China, October, 2020.

[23] Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing, and Daqi Xie.
RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge
Platforms. In ACM Conference on Embedded Networked Sensor Systems
(SenSys), Coimbra, Portugal, November, 2021.

[24] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong
Shi. Edge Computing for Autonomous Driving: Opportunities and
Challenges. Proceedings of IEEE, 107(8):1697–1716, 2019.

[25] George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris,
Jonathan Tompson, and Kevin Murphy. PersonLab: Person Pose
Estimation and Instance Segmentation with a Bottom-Up, Part-Based,
Geometric Embedding Model. In European Conference on Computer
Vision (ECCV), Munich, Germany, September, 2018.

[26] Adam Paszke and et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Annual Conference on Neural
Information Processing Systems (NeurIPS), Vancouver, BC, Canada,
December, 2019.

[27] Rakandhiya D. Rachmanto, Zaki Sukma, Ahmad N. L. Nabhaan, Arief
Setyanto, Ting Jiang, and In Kee Kim. Characterizing Deep Learning
Model Compression with Post-Training Quantization on Accelerated
Edge Devices. In IEEE International Conference on Edge Computing
and Communications (EDGE), Shenzhen, China, July, 2024.

[28] Dheeraj Ramchandani, Bahar Asgari, and Hyesoon Kim. Spica: Explor-
ing FPGA Optimizations to Enable an Efficient SpMV Implementation
for Computations at Edge. In IEEE International Conference on Edge
Computing and Communications (EDGE), Chicago, IL, USA, July,
2023.

[29] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, June, 2018.

[30] Wonik Seo, Sanghoon Cha, Yeonjae Kim, Jaehyuk Huh, and Jongse
Park. SLO-Aware Inference Scheduler for Heterogeneous Processors
in Edge Platforms. ACM Transactions on Architecture and Code
Optimization (TACO), 18(4):1–26, 2021.

[31] Arief Setyanto, Theopilus Bayu Sasongko, Muhammad Ainul Fikri,
Dhani Ariatmanto, I Made Artha Agastya, Rakandhiya Daanii Rach-
manto, Affan Ardana, and In Kee Kim. Knowledge Distillation in Object
Detection for Resource-Constrained Edge Computing. IEEE Access,
13:18200–18214, 2025.

[32] Arief Setyanto, Theopilus Bayu Sasongko, Muhammad Ainul Fikri, and
In Kee Kim. Near-Edge Computing Aware Object Detection: A Review.
IEEE Access, 12:2989–3011, 2024.

[33] Piyush Subedi, Jianwei Hao, In Kee Kim, and Lakshmish Ramaswamy.
AI Multi-Tenancy on Edge: Concurrent Deep Learning Model Exe-

cutions and Dynamic Model Placements on Edge Devices. In IEEE
International Conference on Cloud Computing (CLOUD), Sep., 2021.

[34] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going Deeper With Convolutions. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, June, 2015.

[35] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. Rethinking the Inception Architecture for Com-
puter Vision. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, June, 2016.

[36] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. In The International Conference on
Machine Learning (ICML), Long Beach, CA, USA, 2019.

[37] Guanchu Wang, Zaid Pervaiz Bhat, Zhimeng Jiang, Yi-Wei Chen,
Daochen Zha, Alfredo Costilla-Reyes, Afshin Niktash, Mehmet Görkem
Ulkar, Osman Erman Okman, Xuanting Cai, and Xia Ben Hu. BED:
A Real-Time Object Detection System for Edge Devices. In ACM
International Conference on Information & Knowledge Management
(CIKM), Atlanta, GA, USA.

[38] Lingdong Wang, Liyao Xiang, Jiayu Xu, Jiaju Chen, Xing Zhao, Dixi
Yao, Xinbing Wang, and Baochun Li. Context-Aware Deep Model Com-
pression for Edge Cloud Computing. In IEEE International Conference
on Distributed Computing Systems (ICDCS), Singapore, Nov., 2020.

[39] Ning Wang, Jiangrong Xie, Hang Luo, Qinglin Cheng, Jihao Wu,
Mingbo Jia, and Linlin Li. Efficient Image Captioning for Edge Devices.
In AAAI Conference on Artificial Intelligence (AAAI), Washington, DC,
USA, February, 2023.

[40] Zhujun Xiao, Zhengxu Xia, Haitao Zheng, Ben Y. Zhao, and Junchen
Jiang. Towards Performance Clarity of Edge Video Analytics. In
IEEE/ACM Symposium on Edge Computing (SEC), San Jose, CA, USA,
December, 2021.

[41] Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Junshan Zhang.
CoEdge: Cooperative DNN Inference With Adaptive Workload Parti-
tioning Over Heterogeneous Edge Devices. IEEE/ACM Transactions on
Networking, 29(2):595–608, 2020.

[42] Xiaojie Zhang, Houchao Gan, Amitangshu Pal, Soumyabrata Dey, and
Saptarshi Debroy. On Balancing Latency and Quality of Edge-native
Multi-view 3D Reconstruction. In IEEE/ACM Symposium on Edge
Computing (SEC), Wilmington, DE, USA, December, 2023.

[43] Yanfu Zhang, Shangqian Gao, and Heng Huang. Exploration and Esti-
mation for Model Compression. In IEEE/CVF International Conference
on Computer Vision (ICCV), Montreal, QC, Canada, October, 2021.

	Introduction
	Background and Motivation
	Design of Convergo
	Convergo Overview
	Convergo Scheduling
	Creating Model Execution Plan
	Concurrent DL Model Executions
	Supporting Unknown DL Models
	Implementation of Convergo

	Evaluation Results of Convergo
	Evaluation Setup
	Evaluation Results

	Related Work
	Conclusion
	References

