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Abstract—Edge Al has increasingly been adopted due to the
rapid development of deep learning and Al. At the same time,
as Al models quickly grow in size and complexity, resource-
constrained edge devices face significant challenges in executing
such complex models. Model compression, particularly post-
training quantization, offers a viable approach by reducing
model size and resource demands, making these models more
suitable for the deployment on edge devices. However, despite
its significance, the effects of model compression on edge devices
have yet to be thoroughly explored.

We address this gap by thoroughly characterizing post-training
quantization on accelerated edge devices. We use six different
deep learning models with varied sizes (in MB) and resource
demands. We first characterize on-device post-training quan-
tization on edge devices. Subsequently, we perform a detailed
characterization of the performance and behaviors of quantized
deep learning models with different precision modes. We discuss
the benefits of post-training quantization, including reduced
model size, improved inference latency, and decreased resource
consumption. We also provide a detailed analysis of the downside
of the quantized models, focusing on the reduction of their
inference accuracy.

Index Terms—Edge AI; Edge Devices; On-Device Compres-
sion; Post-Training Quantization;

I. INTRODUCTION

The rapid development and significant achievements of deep
learning (DL) and artificial intelligence (Al) have led to their
widespread adoption in edge computing [1]-[4]. As DL/AI
models continue to grow in size and complexity [S]-[7],
deploying them on edge devices, which are typically resource-
constrained, presents significant challenges. Edge devices are
often equipped with energy-efficient cores and limited memory
spaces [8]-[10]. Additionally, their memory systems usually
adopt a unified/shared model between CPUs and GPUs, and
the number of GPU cores is much smaller compared to those in
high-end GPUs. Consequently, directly deploying complex and
large-scale DL models on edge devices involves overcoming
substantial obstacles, including high computational demands,
excessive energy consumption, and the need for large memory
spaces that are beyond the capabilities of most edge devices.

In response to these challenges, model compression tech-
niques have gained increasing attention [11]-[16]. By employ-
ing methods, e.g., quantization and pruning, it is possible to
significantly reduce the size of DL models, enabling them to
run efficiently on resource-constrained edge devices. While
model compression has traditionally been performed offline

using powerful GPUs, there is a growing demand for on-device
compression [17]-[20]. This approach can greatly enhance the
capabilities of resource managers and schedulers for edge Al
by allowing them to dynamically create optimized models to
address varying Al inference requests and performance goals.

Designing a system capable of on-device compression re-
quires in-depth knowledge and detailed characterization of
compression methods across various edge devices. However,
this area remains largely unexplored. 1t is crucial to under-
stand the overhead and resource requirements for compression
operations, as well as the performance benefits, including
improved inference latency and throughput. Equally important
is identifying the impact of compression on resource consump-
tion/utilization and potential downsides, such as decreased
inference accuracy.

To address this gap, we perform a comprehensive charac-
terization study to understand the opportunities and current
limitations of model compression on edge devices. Specifi-
cally, we focused on Post-Training Quantization (PTQ) [12],
[21] for model compression, considering its advantages, such
as lightweight and resource-efficient nature and the elimination
of expensive additional training processes. These factors make
PTQ suitable for edge Al and potentially for online and on-
device compressions.

In this study, we employ six DL models specialized in image
classification tasks, categorized by model size (in MB) into
small, medium, and large models. Furthermore, we utilize two
widely used accelerated edge devices with differing hardware
specifications: NVIDIA’s Jetson Xavier (XAVIER) [22] and
Orin Nano (ORIN) [23]. Although both devices have similar
HW specifications for CPU cores and memory size, ORIN
is equipped with a significantly larger number of edge GPU
cores (2.7 x), expected to enhance Al processing performance.
By employing these devices, we aim to assess the impact of
GPU size on the compression workflow and the processing
efficiency of quantized DL models. We explore multiple pre-
cision modes, e.g., 16-bit floating point (FP16), 8-bit integer
(INTS), in PTQ to determine the advantages and disadvantages
of each configuration. Our goal is to identify the most signif-
icant expected benefits and drawbacks of model compression
and quantized models, specifically latency improvement and
accuracy drops, on XAVIER and ORIN.

We found several key observations of the PTQ process
and the impact of quantized DL models on edge devices.
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Fig. 1. Overall Flow of PTQ-based Model Compression on Edge Devices.

First, the compression time and overhead for on-device PTQ
vary widely depending on the model size, device’s HW/GPU
capacity, and precision mode configurations. In particular,
PTQ with INT8 precision mode leads to longer compression
times due to additional calibration requirements. Second, PTQ-
based compression can decrease the model size to 58% of its
original, and models quantized with INTS precision are further
reduced to 77% of the original size. Additionally, despite
the considerable reduction in the model size, the quantized
models’ accuracy loss remains relatively minor. For example,
models quantized to FP16 precision mode experience up to
a 4.5% drop in accuracy, whereas the INT8-based quantized
models can have up to a 13.9% accuracy decrease. The
reduction in model size also leads to lower GPU and memory
consumption, though CPU usage becomes higher as the CPU
handles scheduling for the smaller (quantized) models more
frequently. Lastly, we also confirm that quantized models can
achieve significant improvements in inference latency, with
reductions between 55% and 67% compared to the original
models.

This work makes several research contributions:

1. Characterizing the on-device PTQ process on edge
devices: We divide the PTQ compression process into two
phases: 1) the base model conversion to an ONNX (Open Neu-
ral Network eXchange) [24] representation and 2) TensorRT
conversion (quantization). We provide detailed analyses of the
overhead and resource consumption for each step of the PTQ
pipeline.

2. Examining the impact of HW capacity in edge devices
on PTQ: We examined the comparison of the impacts of GPU
capacity (core numbers) on model compression effectiveness,
specifically identifying how differences in GPU core count in
edge devices impact the PTQ compression workflows.

3. Conducting a detailed analysis of the impact and
performance of quantized models: We evaluate the various
aspects and performance of the quantized models, including
model size reduction, reduction in resource consumption after
quantization, accuracy changes of the quantized model, as well
as latency improvement.

The rest of this paper is organized as follows: §II describes
the background of PTQ on the accelerated edge devices.
§III provides our benchmark setup in detail. §IV reports our
evaluation and characterization results regarding the on-device
PTQ process as well as the performance and behavior of the
quantized DL models. §V describes related work. Finally, § VI
concludes this paper.
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Fig. 2. The Detailed Procedure of PTQ with INT8 Precision Mode.

II. BACKGROUND OF POST-TRAINING QUANTIZATION

Model compression techniques, such as quantization, prun-
ing, and knowledge distillation, are increasingly becoming
essential components of enabling edge Al [1], [25]. Model
compression aims to reduce the complexity and size of DL
models, with the goal of enhancing latency, optimizing energy
consumption, and minimizing the impact on model accuracy.
In particular, smaller model sizes with reduced memory re-
quirements are well-suited to the resource constraints of edge
devices, thereby being widely deployed across various edge
Al inference services.

Overview of On-device Post-Training Quantization (PTQ).
PTQ is a widely-used approach for compressing DL. models
[12], [21]. PTQ is a subclass of quantization-based model com-
pression, along with quantization-aware training [12], [13].
In quantization, compression can be done by adjusting the
precision of a DL model and weights to a lower-bit repre-
sentation. In this study, we specifically investigate the PTQ-
based model compression on NVIDIA Jetson edge devices
and characterize the conversion of TensorFlow models from
32-bit floating point (FP32) into 16-bit floating point (FP16)
and 8-bit integer (INT8) models using PTQ through TensorRT.

To perform PTQ on NVIDIA edge devices, NVIDIA offers
standalone toolkits and integrations for DL frameworks, e.g.,
trtexec', Polygraphy’, and TF-TRT®, to create compatible
TensorRT models for NVIDIA’s edge GPU architectures. The
general compression procedure with PTQ (shown in Fig. 1) is
as follows: The compression pipeline takes a pre-trained (base)
model as an input. The base pre-trained model is converted
into an ONNX model, an open-standard representation of ML
models [24]. The TensorRT conversion process (in Fig. 1)
involves compression and quantization stages with specific
compression configurations. These configurations include pre-
cision modes like FP16 or INT8, workspace size parameters

Uhttps://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec
Zhttps://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
3https://github.com/tensorflow/tensorrt
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Table 1. Deep Learning Model Information and Top-1 Accuracy.
“Oxford”: Oxford 102-flowers dataset, “C100”: CIFAR-100 dataset.

Table 2. Two Accelerated Edge Devices: NVIDIA Jetson Xavier NX and
Jetson Orin Nano.

indicating maximum memory requirements, and options for
leveraging DL accelerators. Finally, upon completion of the
quantization process, the TensorRT model is generated, ready
for inference tasks, such as image classifications and object
detections.

However, the compression procedure can vary depending
on the selection of precision mode, such as FP16 vs. INTS.
Quantizing to INTS8 is more complex than FP16-based quan-
tization due to the limited value range of INT8 quantization,
ranging from —128 to +127. As a result, PTQ with INTS8 pre-
cision requires an additional calibration step, which requires
a specific input referred to as calibration data [26].

Fig. 2 depicts the detailed procedure of PTQ with INTS,
which consists of four steps. In Step (1), TensorRT performs
FP32 inferences on the calibration dataset to capture the
baseline performance and activation data for the model. Step
(2) performs a quantization threshold analysis in the ONNX
model, repeated across all layers. In this step, for each layer,
TensorRT analyzes the distribution of activation values and
simulates quantization at various thresholds to assess the
impact of different quantization levels. This simulation and
analysis employ the Kullback-Leibler (KL) divergence [27] to
measure the accuracy loss between the original FP32 activation
distributions and the potential INT8 quantized distributions.
The threshold that results in the least KL divergence is selected
as the optimal scaling factor (having minimal accuracy loss),
and it guides the next quantization steps. Step (3) involves
using this optimal scaling factor to convert the FP32 weights
(and activations) into INTS8. Finally, in Step (4), TensorRT
generates a Calibration Table, which is used to determine
the appropriate quantization parameters (e.g., for weights and
activations) for converting from FP32 to INT8 with minimal
accuracy loss and memory requirements. The determined
quantization parameters are then applied to create the final
compressed INT8 model.

Why PTQ? While various compression methods [14]-[16]
exist to reduce model size and complexity, our study focuses
on characterizing the performance and overhead of PTQ on
edge devices. We specifically select PTQ for its efficiency
and suitability for on-device compression, which is augmented
by TensorRT’s additional optimizations. For example, PTQ
is lightweight and faster than other compression techniques
because it does not require additional re-training stages [28].
In contrast, the compression pipelines of other methods (e.g.,
pruning and knowledge distillation) are more extensive and
require extra steps for training and parameter optimizations

Model (Abbr.) Size Input Accuracy Jetson Xavier NX | Jetson Orin Nano
- (MB) Size Oxford | C100 CPU 6-core Carmel 6-core Cortex-A78AE

MobileNetV3-Small (Mob-S) 4.7 224 x 224 73.73 63.10 @1.9GHz @1.5GHz
MobileNetV3-Large (Mob-L) 9.7 224 x 224 78.82 66.99 384-core Volta, 1024-core Ampere,
EfficientNetB1 (Eff-B1) 33 224 x 224 79.43 70.33 GPU 48 Tensor cores 32 Tensor cores
EfficientNetB3 (Eff-B3) 50 224 x 224 75.83 71.97 @1100 MHz @625 MHz
DenseNet169 (D169) 61 224 x 224 81.12 70.12 Shared 8GB Shared 8GB
DenseNet201 (D201) 85 | 224 x 224 | 8330 | 7141 Memory LPDDR4X LPDDR4X

Power Mode | 10W, 15W, 20W 7.5W, 15W

[} Ubuntu 20.04 Ubuntu 20.04

JetPack ver. 5.1 ver 5.1

compared to PTQ’s compression pipelines. Specifically, PTQ
with TensorRT requires only two inputs: the base pre-trained
model and calibration data. Furthermore, TensorRT enhances
model compression with PTQ through additional operations
like layer fusions, reduction operations, and multilayer per-
ceptions, resulting in smaller models with enhanced latency
performance [29].

III. EXPERIMENT SETUP AND BENCHMARK PROCEDURES

We now describe our experiment setup and benchmarking
procedures to characterize the performance and overhead of
PTQ-based model compression on edge devices.

A. Experiment Setup

DL Models and Benchmark Datasets. We employ six pre-
trained DL models, as described in Table 1, and the models
are selected based on their size. For example, MobileNetV3-
Small (Mob-S) and MobileNetV3-Large (Mob-L) models [30]
are lightweight models with model sizes of 4.7MB and 9.7MB,
respectively. Medium models include EfficientNetB1 (Eff-B1)
and EfficientNetB3 (Eff-B3) [31], with sizes of 33MB and
50MB. DenseNet169 (D169) and DenseNet201 (D201) [32]
are the large models, sized at 61MB and 85MB, respectively.
These six models are built for image classification tasks, which
are widely used Al inference tasks at the edge, including self-
driving vehicles, surveillance, drone tasks, and healthcare [1].

For benchmark datasets, we utilize two image classification
datasets: Oxford 102-flowers [33] and CIFAR-100 [34]. Ox-
ford 102-flowers dataset includes 102 classes, ranging from 40
to 258 images per class, totaling 1024 images for training and
validation. CIFAR-100 dataset has 100 classes with 60,000
images. Table | also reports the image classification accuracy
of six DL models on both datasets.

DL Framework and Libraries. We utilize two DL frame-
works and multiple libraries essential for the PTQ compression
process: TensorFlow [35] and TensorRT [36]. TensorFlow is
employed to build the uncompressed baseline model, and
TensorRT is used to perform the PTQ compression task,
which will create a model with reduced size and improved
inference speed. Furthermore, TensorRT is also utilized in
our characterization study to evaluate the performance and
behavior of the compressed model on edge devices.



As previously discussed, TensorRT requires an ONNX [24]
model to facilitate the PTQ compression process. The tf2onnx”
tool is responsible for converting the TensorFlow model into
this ONNX representation. Following this conversion, the
Polygraphy toolkit provides the necessary functionality for
TensorRT to support models in the ONNX format.

Accelerated Edge Devices. We employ two edge devices, and
their HW specifications are described in Table 2.

o Jetson Xavier NX (XAVIER) [22] is an edge device
based on the power-efficient Xavier SoC. XAVIER has
six NVIDIA Carmel CPU cores, a 384-core Volta GPU
with 48 Tensor cores, and 8GB of LPDDR4X memory
shared by the CPU and GPU.

o Jetson Orin Nano (ORIN) [23] is a recently released
edge device from NVIDIA, based on the newer Orin SoC.
ORIN features a six-core Arm Cortex-A78AE processor,
a 1024-core Ampere GPU with 32 Tensor cores, and 8GB
of shared LPDDR5 RAM for both CPUs and GPUs.

Default Configurations. While
both devices offer different power
modes (e.g., high-performance
mode vs. energy-efficient mode), *
for this study, they are set to
their maximum power mode. For
example, XAVIER is configured ‘

to a 20W mode, enabling all six Start Monitoring
cores at their maximum frequency Thread for Data

Load Base Model &
Calibration Data

Warm-up Run
(1 exec)

o Collection
of 1.9GHz and activating all GPU *
cores at their maximum speed of .
1100MHz. ORIN operates in a > o'?xffhﬁ?;g:;i')on
I15W power mode, which allows ‘
all six cores to run at the same

TensorRT Conversion
(With Polygraphy)

1.5GHz frequency and all 1024
GPU cores at their maximum
speed of 625MHz. Additionally,
we enable ‘jetson_clocks’
to ensure the devices operate
at maximum CPU and GPU

Repeat

frequencies. End of data
. . collection, end of
To ensure a fair comparison benchrark

and characterization, we use iden-
tical versions and configurations of
the necessary packages on both
devices. For example, both de-
vices are equipped with Tensor-
Flow v2.12, TensorRT v8.5.2, ONNX v1.15.0, tf2onnx
v1.16.1, Polygraphy v0.47, CUDA v11.4, and cuDNN v8.6.0.
The OS and JetPack SDK versions are also the same for both
devices, with Ubuntu 20.04 and JetPack 5.1 being used.

B. Benchmark Procedure

Fig. 3. The Overall Proce-
dure of PTQ Compression
Benchmark.

Our characterization study consists of two parts: (1) charac-
terization of PTQ compression on edge devices and (2) analy-
sis of the performance and behavior of compressed/quantized

4https://github.com/onnx/tensorflow-onnx

models on the devices. Therefore, we perform two measure-
ments associated with these characterization studies.

PTQ Compression Benchmark. As discussed in §II, PTQ
compression involves two primary steps: 1) ONNX conversion
for creating an intermediate representation and 2) TensorRT
conversion for quantization and compression. This benchmark
aims to measure the overhead and resource consumption
during these two critical steps. The PTQ compression bench-
mark procedure is illustrated in Fig. 3. The benchmark will
repeatedly measure both conversion steps to ensure accurate
data collection by minimizing the impact of outliers. The
very first execution is treated as a warm-up run and is not
considered in the final analysis. Subsequently, the benchmark
initiates a monitoring thread to collect various metrics, in-
cluding resource consumption and total compression time.
The monitoring thread continues to collect necessary metrics
and data during the two conversion steps of the compression
pipeline. This process is repeated until the benchmark count
reaches a predefined number (in our case, five measurements
are performed). After completing all measurements, the bench-
mark compiles the collected metrics and data, concluding the
benchmark process.

Compressed Model Benchmark. - -

K A Load “Compressed’
This benchmark aims to collect data DL Model
to characterize the performance and ‘
behavior of the compressed model via

. . . Warm-up Run
PTQ. It will primarily collect data (5 execs)
on improved inference latency and ‘
resource consumption. Fig. 4 illus-
. . Start Monitoring

Fre.tt?:s the penchmark p'1pehne. The Thread (Resurce Uti)
initial step involves loading the com-
pressed DL model using TensorRT. ‘
The first five inference executions are
performed as warm-up runs and will
be discarded. The benchmark then ‘
initiates monitoring threads for data
collection. Subsequently, it conducts
actual inference tasks, during which
the monitoring thread collects vari-
ous performance metrics. Similar to
the previous benchmark, the infer-
ence tasks are executed multiple times to ensure the accuracy
of data collection; in our case, we perform 30 inference
tasks. Finally, the benchmark compiles the collected data and
concludes the benchmark process.

Inference for X times

End of data collection
and benchmark

Fig. 4. The Procedure
of Benchmark for Com-
pressed DL Models.

Performance Metrics. For the PTQ compression benchmark,
we assess the compression overhead and resource consump-
tion (e.g., CPU, memory, GPU) during the compression pro-
cess. Specifically, the compression overhead arises from two
main steps: ONNX conversion and TensorRT conversion. We
measure the overhead associated with each step. We utilize
pidstat’ to measure CPU and memory utilization, and we
employ tegrastats® for measuring GPU utilization.

Shttps://man7.org/linux/man-pages/man1/pidstat.1.html
Shttps://docs.nvidia.com/drive/drive-os-5.2.0.0L/drive-os/index.html


https://github.com/onnx/tensorflow-onnx
https://man7.org/linux/man-pages/man1/pidstat.1.html
https://docs.nvidia.com/drive/drive-os-5.2.0.0L/drive-os/index.html

100 T T T T T T
80k — Xay|er |
1 Orin

60 [ .
40

2°mmm|h '

o o)
V‘\o‘o @0‘0 ?K‘% Q,’(‘% 0\6 07’0

Latency (ms)

Fig. 5. Inference Latency of Base Six Models on Both Edge Devices.

For the compressed model benchmark, we evaluate the
accuracy, latency, and size of the compressed models, as well
as resource consumption during inference tasks on the devices.

IV. CHARACTERIZATION RESULTS

This section provides our characterization results of a com-
pressed DL model with PTQ. We start by characterizing the
base model’s performance and behaviors on both edge devices
(§IV-A) and then move on to a detailed analysis of on-device
PTQ compression (§1V-B). Finally, we present our analysis
and characterization on the performance and behaviors of
quantized models (§IV-C).

A. Base DL Model Characterization

Our base model characterization focused on measuring
inference latency and resource consumption for six DL models
across various edge devices.

Inference latency. Fig. 5 shows the inference latency of the six
base DL models before quantization. We tested DL models’
inference latency with both Oxford 102-flowers and CIFAR-
100 datasets with 2500 images, and the figure shows the
average inference time for a single image. ORIN provides
faster inference times across all six models than those observed
on XAVIER. This result is anticipated, given that ORIN has
approximately 2.7x more CUDA cores in its edge GPUs,
enabling it, on average, to offer inference times that are 23%
faster than XAVIER.

Furthermore, inference latency appeared to increase with
model size. For example, the two smaller models (Mob-S
and Mob-L) processed a single image inference in 10.7ms to
12ms. The medium models (Eff-B1 and Eff-B3) showed one
image inference times of 43ms on XAVIER and 31ms on ORIN.
The two larger models (D169 and D201) exhibited inference
latencies of 77.6ms on XAVIER and 53ms on ORIN.

Resource utilization. We measured GPU, CPU, and memory
utilization while the models performed inference operations,
as shown in Fig. 6. The edge GPUs on both devices showed
increased utilization with larger model sizes. Additionally,
Xavier had 13% to 18% higher GPU utilization (Fig. 6a),
attributable to its fewer number of GPU cores. Consequently,
ORIN, leveraging its larger edge GPUs and more GPU cores
(Fig. 6b), enabled faster inference times.

Interestingly, CPU utilization decreased as the model size
increased (as shown in Fig. 6¢), which is opposed to the GPU
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Fig. 6. Resource Utilization of Six Base Models on XAVIER and ORIN.
(a): GPU Utilization, (b) The number of Utilized CUDA Cores, (c) CPU
utilization, and (d): Memory utilization.

utilization patterns with larger models. Our further analysis
revealed that this is mainly due to larger models’ higher
latency (inference time), requiring longer GPU processing
time. With edge GPUs’ FIFO with non-preemptive scheduling
[37], [38], CPU performs fewer scheduling tasks for larger
DL models but more frequent GPU scheduling operations for
smaller DL models. As a result, the CPU on XAVIER and
ORIN had high utilization with smaller DL models and lower
utilization with larger DL models.

Memory consumption remains stable regardless of the
model size, as shown in (Fig. 6d). This stability is pri-
marily due to the memory utilization being determined by
the TensorRT framework we utilized. Of course, there is
memory consumption from DL models, but the framework
is the dominant consumer of memory resources. However, we
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ORIN.

observed that memory utilization can still vary per device.
ORIN exhibited a 10% higher utilization compared to XAVIER,
despite both devices having an identical memory capacity of
8GB. This difference primarily arises because Nvidia’s edge
devices utilize a unified memory system shared between CPUs
and GPUs [39]. As a result, to support more CUDA cores,
ORIN needs additional memory resources, leading to its 10%
higher memory utilization.

B. On-Device PTQ Compression Characterization

In this characterization, we evaluate the overhead and re-
source utilization when performing on-device PTQ compres-
sion on XAVIER and ORIN. FP-16 and INTS8-based quantiza-
tion processes differ slightly, potentially leading to variations
in model performance and operations. Consequently, we utilize
FP16 and INT8 as the precision modes for PTQ compression.

PTQ Compression Overhead. We first evaluated the over-
head (the duration of PTQ compression) on XAVIER and
ORIN, with the results shown in Fig. 7. PTQ compression
process involves two steps: conversion to ONNX format
and TensorRT conversion (quantization and compression), as
detailed in §II. The ONNX conversion is a common task. Both
FP16 and INTS precision modes had identical durations for
converting the base model into ONNX representation when

applied to the same model on the same device. However, the
TensorRT conversion step, which is to quantize and compress
models, varied significantly, ranging from 32s to 1150s, as per
the selection of precision mode and the device.

We found that three factors can significantly impact the PTQ
compression time: the precision mode, the device’s resource
capacity, and the model’s size. Specifically, the INTS8 precision
mode required a significantly longer compression time (1.9x)
compared to the FP16 precision mode. As illustrated in Fig.
2 (81I), INT8-based PTQ needs additional calibration steps,
which naturally extend the compression time. Additionally,
the hardware resource capabilities of the edge devices can
significantly affect the PTQ compression time. For example,
the PTQ compression process on ORIN was considerably
faster than on XAVIER. Although times varied across different
models and precision modes, Orin demonstrated a 1.3x to
2.77x faster compression time, leveraging its larger GPU
capacity. Moreover, the model size could be another determi-
nant of compression time. Mob-S, the smallest model in our
study, showed the shortest compression time compared to the
medium and large models. Yet, the longest compression times
for Eff-B1 and Eff-B3 models suggested that other factors
could also influence the duration of PTQ compression. One
possible factor could be the distinction in layer types across
model architectures, which may result in different optimization
steps being applied during PTQ. We observed that TensorRT
performed more fusion and erase operations in Eff-B1 and Eff-
B3 compared to D169 and D201. Additionally, due to archi-
tectural differences between models, a layer that exists in both
models could be optimized in one model while being skipped
in the optimization process of the other during quantization.
For example, during on-device compression, TensorRT spent
considerable time optimizing FusedBatchNormV3 operators
(an optimized version of a batch normalization layer) in Eff-
B1 and Eff-B3, whereas these operators were skipped in D169
and D201. In particular, TensorRT executed this optimization
more than 100 times, with each optimization taking 0.6s to 8s
for both Eff-B1 and Eff-B3.

Resource Utilization Variation During On-Device PTQ. We
also measured specific resource utilization during the PTQ
compression processes on both devices. Fig. 8 shows the
variation in resource utilization during two steps in the PTQ
process. In this figure, we report on six examples of PTQ
compression: quantizing Mob-S with both FP16 and INTS on
XAVIER, Eff-B3 with FP16 and INT8 on XAVIER, and D201
with FP16 and INT8 on ORIN. We omit other results due
to page limitations, but the outcomes of these six cases are
representative of the others.

1) ONNX Conversion Step: As the results show, the ONNX
conversion step utilized only CPU and memory resources.
On average, this step required about 20% of CPU resources
across all models. Memory consumption increased gradually
over time and was directly proportional to the model size. For
example, during the ONNX conversion of Mob-S, memory
utilization peaked at only 16%. In contrast, the ONNX con-
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during the conversion process, as observed in the Mob-S (Fig.
8d) and D201 (Fig. 8f) INT8 conversions. This fluctuation
is mainly due to the necessary CPU-bound operations during
the quantization and compression phases, during which CPU
usage increased.

Additionally, memory and CPU resources were consis-
tently utilized throughout this step, though not always at
high utilization. Memory usage increased gradually during
the conversion, with INT8-based conversions/quantizations
requiring more memory than FP16-based conversions due to
the additional calibration process outlined in §II. CPU usage in
the TensorRT conversion step varied across different models,
with fluctuations observed in all models.
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Fig. 9. Normalized Size of Quantized Models After PTQ Compression.
The dotted line at 1.0 represents the normalized base model size. The actual
model sizes in MB are detailed in Table I of §III.

C. Quantized DL Model Characterization

We now evaluate various aspects of quantized DL models,
including reduced model size, accuracy changes, resource
utilization, and latency improvement.

Model Size Reductions via PTQ. As expected, PTQ sig-
nificantly reduces model sizes. Fig. 9 reports the normalized
size reduction of six DL models achieved through PTQ com-
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pression with FP16 and INT8. FP16-based quantized models
experienced a 58% reduction in size, while models quantized
to INT8 could achieve more substantial reductions of over
70%. For example, MOB-S, our smallest model, compressed
from its original size of 4.7MB to 1.5MB using FP16 and
further to 1.3MB with INTS8. Similarly, D201, our largest
model, had its size reduction from 86MB to 37MB with FP16
quantization and to 22MB with INTS8. This greater efficiency
in size reduction with INT8-based PTQ is primarily due to its
storage efficiency during the PTQ process. Specifically, INT8
requires only 1 byte per a quantized value, compared to the
2 bytes needed for FP16 values, leading to more significant
reductions in model size.

Accuracy Changes in Quantized Models via PTQ. We mea-
sured the top-1 accuracy of compressed DL models via PTQ
in two different precision modes (FP16 and INTS8), and we
present the accuracy results in Fig. 10. We observed significant
differences in accuracy between the quantized models under
these two precision modes. For example, FP16-based quan-
tized models showed less top-1 accuracy loss, with an average
reduction of 2.9% compared to the base models’ accuracy’,
which ranged from 0.94% to 4.49%. However, INT8-based
quantized models experienced a significantly higher average
accuracy drop of 13.9% compared to the base models.

There are factors that contributed to the significant accuracy
drop of INTS8-based quantized models compared to FP16-
based models. First, we trained the base models for 10
epochs without any augmentation through transfer learning,
using batches of 4 and 32 for the Oxford 102-flowers and

"The accuracy of the base models (with Oxford 102-flowers and CIFAR-
100 datasets) is also reported in Table 2 in §III.
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Fig. 11. Normalized Resource Consumption of Quantized Models.

CIFAR-100 datasets, respectively. These training parameters
contributed to the models’ robustness. Second, INT8-based
PTQ requires smaller storage for quantizing the original value,
i.e., 1 byte for INT8 compared to 2 bytes for FP16. INT8
has a narrower representation range, from -128 to +127, as
discussed in §II, which can lead to lower accuracy compared
to FP16. Moreover, INT8-based quantization relies heavily on
the weights and activations of the model during the calibration
process [40]. A more robust model can mitigate the potential
accuracy loss resulting from this calibration. However, opti-
mizing the calibration process and hyperparameter tuning are
beyond the scope of this work; we plan to address these aspects
in future research.

Resource Consumption of Quantized Models. A major
benefit of PTQ compression, as previously discussed, is the
reduced model size, which can lead to decreased resource con-
sumption and enable the models to be deployed on resource-
constrained devices. To confirm this benefit, we also measured
the resource consumption of the quantized models on XAVIER
and ORIN.

Fig. 11 shows the GPU, memory, and CPU resource con-
sumption of quantized models on both edge devices. As
expected, running quantized models reduced both GPU and
memory resource consumption on both devices. Specifically,
on XAVIER, the quantized models consumed 19% less GPU
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Fig. 12. Normalized Latency of Quantized Models. The figures demonstrate
the reduced (improved) latency of quantized models compared to the latency
of the base models. These latency results were measured through inference
operations on the CIFAR-100 datasets.

and 9% less memory compared to the orignial models. They
also showed a reduction of 10% in GPU and 18% in memory
consumption on ORIN. Moreover, between the two preci-
sion modes, INT8 offered more benefits in GPU resource
consumption compared to FP16, while memory consump-
tion showed no meaningful differences. INT8-based quantized
models could further reduce GPU resource consumption by
4.5% to 6% on both devices.

Regarding CPU consumption of quantized models, we ob-
served a 13% increase in CPU utilization on XAVIER and
a marginal increase (3%) on ORIN. Furthermore, smaller
quantized models exhibited a higher pattern of increase in
CPU utilization on XAVIER. Smaller models may trigger more
scheduling operations, potentially leading to increased CPU
consumption.

Latency Improvement of Qunatized Models. The reduction
in model size through quantization can significantly improve
the inference latency of the models. Fig. 12 reports the normal-
ized latency of quantized models on both edge devices when
performing inference operations on CIFAR-100 datasets. We
measured the latency of both FP16- and INT8-based quantized
models, which was consistent with previous results.

We observed that all quantized models achieved significant
improvements in latency compared to the base models. On
both devices, the quantized models showed 67% (XAVIER)
and 55% (ORIN) improvements in the inference latency.
Additionally, we noted that medium and large models benefit
more from quantization in terms of latency improvement.
This is primarily because these models can undergo a greater
reduction in physical size (MB) compared to Mob-S/Mob-L,
which directly contributes to reducing the models’ latency.
Moreover, INT8-based quantized models can achieve slightly
faster inference times, 3% to 4% faster than those of FP16
models.

V. RELATED WORK

Various studies have investigated ML/AI workload charac-
teristics on edge devices, including low-performance single-
board computers and specialized Al accelerators like Rasp-
berry PIs, Arduino microcontrollers, NVidia Jetson devices,
Intel Movidius VPUs, and edge TPU accelerators [8], [9],
[41]-[47]. These studies often reported on performance met-
rics such as inference latency, overhead, and resource con-
sumption.

Hao and Subedi [44], [45] explored approaches to maximiz-
ing inference throughput on edge devices by employing con-
current DL model executions and dynamic model placements
on heterogeneous edge Al accelerators. They also identified
the maximum supported concurrency level of DL models
on multiple edge devices and accelerators. Hadidi er al. [8]
additionally focused on the thermal aspects of edge devices
and conducted a detailed characterization of behaviors of each
software stack involved in Al inference tasks.

DeepEdgeBench [43] focused on energy consumption
alongside common characterization metrics on edge devices
with Al workloads and DL models. Liang et al. [9] con-
ducted an evaluation of Al and ML workload performance
within edge-cloud collaborative environments examining net-
work latency, bandwidth usage, and resource utilization while
implementing model splitting and compression techniques.
Their study highlighted the advantages of utilizing edge-
cloud co-inference strategies. Specifically, DeepEdgeBench
and the work by Liang et al.examined certain aspects of model
compression by leveraging 8-bit quantized models. However,
their focus was either primarily on edge-cloud co-inferences
or enabling edge TPU accelerators, which require quantized
models. Additionally, these works did not thoroughly explore
the characteristics of edge devices and ML frameworks when
performing on-device model compression.

pCamp [41] characterized the performance and behaviors
of several ML packages and frameworks on edge devices.
The study selected five packages, e.g., TensorFlow, Caffe2,
MXNet, PyTorch, and TensorFlow Lite, to assess their perfor-
mance across five edge devices. This work evaluated latency,
memory footprint, and energy consumption using two different
models: AlexNet (as a larger-sized model) and SqueezeNet (as
a smaller-sized model). The findings revealed that the time
required to load the models exceeds the time spent executing



them. Additionally, a trade-off between memory usage and
latency was observed in all evaluated packages.

Moreover, the runtime overhead of DL/AI workloads on
edge devices has also been explored. Ma et al. [42] employed
common computer vision tasks on three device categories
(e.g., GPU-based, ASIC-based, and general-purpose devices)
to quantify the runtime overheads. Their experiments across
device categories revealed runtime overhead and the impact of
different neural network layer types on the runtime overheads.

Finally, Shafi et al. [47] also conducted an in-depth analysis
of TensorRT, the primary quantization framework in our
study on edge devices. The performance evaluation of models
compiled with TensorRT shows that the models were able to
maintain a similar accuracy compared to the original models,
in addition to significantly higher throughput. Furthermore,
TensorRT-compiled models led to increased concurrency and
GPU utilization.

VI. CONCLUSION

In this work, we performed a thorough characterization
study of PTQ compression on edge devices. We focused
on the PTQ compression method because it is lightweight,
resource-efficient, and does not require additional, expensive
training stages, making it suitable for edge Al use cases. This
characterization study was conducted on real-world, resource-
constrained edge devices, XAVIER and ORIN, characterized by
limited CPU cores and memory capacity, and equipped with
only 384 to 1024 GPU cores. For this characterization, we
employed six widely used DL models of varying sizes, from
small models like Mob-S/L to larger models like D169/201.
We also explored two different precision modes, e.g., FP16,
INTS8, which can impact the quantized models’ size, accuracy,
latency, and overall compression time on the devices.

We evaluated the compression overhead (time) and vari-
ation in resource utilization on edge devices during on-
device compression with PTQ. Subsequently, with the models
quantized in two different precision modes, we identified
their benefits, including reductions in model size, decreased
resource consumption, and improvements in inference latency.
Additionally, we identified associated challenges, such as a
decrease in accuracy of the quantized models.
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