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Abstract—Low-cost sensors and IoT technologies have facil-
itated the deployment of environmental sensors to collect and
analyze various factors, such as soil properties. Due to the
lack of electric power networks in many deployment locations,
these sensors rely on energy harvesting (EH) systems that use
natural energy sources such as solar power. Specifically, solar-
powered EH systems benefit from timely obtaining weather
information for efficient future energy scheduling. However,
obtaining weather information for EH environmental sensors is
always challenging, as they are commonly deployed in harsh
environments without network access.

To address this problem, we present DynaES, a novel energy
scheduling method for EH sensors without relying on online
weather forecasts. DynaES comprises two components: a DC
power gain estimator that predicts future power gain by individ-
ually estimating changes in environmental parameters and en-
sembling them, and a dynamic energy scheduler that distributes
energy to sensors based on priority and adjusts sensing intervals
and frequency. We evaluate DynaES via simulation-based studies
on real-world datasets and compare its performance against
state-of-the-art baselines. Evaluation results show that DynaES
accurately predicts future energy gain with low estimation errors
and enables 1.8× – 4× more frequent sensing operations with
shorter sensing intervals while achieving longer operation hours
without complete battery drains.

Index Terms—IoT; Energy Harvesting; Energy Scheduling;

I. INTRODUCTION

With the emergence of low-cost sensors and IoT technolo-
gies, various environmental sensors are increasingly developed
and deployed to monitor, collect, store, and analyze various en-
vironmental factors [1]–[3], such as soil [4], [5] and ecological
properties [6]. One of the most critical design considerations
when deploying such systems is ensuring that the sensors have
a stable and sufficient power supply to remain operational.
This becomes particularly challenging for deployment places
where electric power networks are not available [6].

Energy harvesting (EH) is a promising approach for pow-
ering sensors by converting and storing energy from natural
sources [7], [8]. In particular, solar energy is a widely used
and convenient power source, and various solar panels are
well-operational with computing boards like Raspberry Pi
and Arduino, as well as IoT sensors. However, the stability
of solar energy supply is subject to weather conditions. For
example, deployed sensing systems may face multiple rainy
and cloudy days, resulting in an energy shortage and discon-
tinuation of sensor operations. Therefore, as shown in Fig.
1, EH sensing systems are typically equipped with energy
storage units (ESUs), such as portable battery packs, that
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Fig. 1. Energy harvesting sensing pipeline

are directly connected to the sensors/computing boards. These
units regularly recharge during sunny days to ensure a stable
energy supply and continuous operation of the sensors.

The instability of the power supply poses another challenge
for solar-powered environmental sensors, as these sensors are
often deployed in harsh environments (e.g., wetlands, reser-
voirs) to collect environmental factors. Unfortunately, these
areas often lack reliable network access, making it difficult
to obtain timely weather forecasts from well-known weather
services [9], [10], thereby hindering the effective management
of charged energy levels and power distribution to the sensors.
This can result in frequent interruptions and delays in sensor
operations to collect target sensing data. Therefore, it is crucial
for EH environmental sensors to manage their energy capacity
intelligently [11] while enabling seamless sensor operations
within a limited power budget [12], [13].

This work directly tackles the energy management prob-
lem of EH environmental sensors, especially when deployed
in harsh environments without network access. We present
DynaES that accurately estimates the ESU’s battery level (DC
power gain) and dynamic energy scheduling based on sensor
priority. We first develop a DC power gain estimator for
DynaES to predict the available energy amount during the next
operation period. With a thorough analysis of the National
Solar Radiation Database (NSRDB) [14] and Photovoltaic
Data Acquisition (PVDAQ) Public Datasets [15], we reveal
that three parameters – global horizontal irradiance (GHI)
[16], temperature, and solar zenith angle (SZA) [17] – are
most critical to determine the DC power gain. The power gain
estimator forecasts changes in these three parameters for the
upcoming sensors’ operation period (e.g., one or two weeks)
and utilizes a random forest model with the three estimated pa-
rameters to determine the final power gain. As this power gain
estimator requires in-situ deployment with the various sensors,
we carefully determine the best predictor for each parameter
based on the accuracy, overhead, and power consumption in



a computing board (Raspberry Pi). Specifically, we use a
combination of lightweight deep learning and statistical time-
series models for estimating these parameters.

Moreover, the scheduling component in DynaES performs
dynamic power distribution based on each sensor’s priority
(significance). The sensing priority is determined based on
domain-specific characteristics (e.g., ideal sensing frequency
for high data quality) and real-world metrics (e.g., power
drain). The scheduler then dynamically adjusts the intervals
and frequency of sensing operations in order to ensure high
energy efficiency and preserve sensing data quality.

We created a trace-based simulator to evaluate the effec-
tiveness of DynaES, which utilizes input data created from
two publicly available solar radiation datasets to estimate the
DC power gain and simulate dynamic power scheduling for
different EH sensors. To ensure a realistic simulation study,
we collected data on the real power consumption of the DC
power gain estimator and environmental sensors, including
pH, electrical conductivity (EC), oxidation-reduction potential
(ORP), and temperature sensors. We used this data as the
simulation parameters for evaluating DynaES.

Our evaluation of DynaES focused on measuring the ac-
curacy of the estimated DC power gain, monitoring changes
in the charged battery level, and analyzing the frequency and
intervals of sensing operations to determine whether DynaES
can ensure sustainable sensor operations and data quality.
According to our evaluation results, DynaES was able to
accurately estimate the DC power gain with a RMSE of less
than 100 within a week. We further compared the scheduling
performance of DynaES with state-of-the-art baselines. The
results revealed that DynaES enabled 1.8× to 4× more sensing
operations, with shorter sensing intervals, without experienc-
ing any outage caused by a complete battery drain.

The contributions of this work are as follows:
1. Accurate DC power gain prediction. The DC power

gain estimator in DynaES can accurately predict ESU’s
DC power gain by combining lightweight predictors, which
are carefully determined by their accuracy, overhead, and
power consumption. This prediction mechanism enables solar-
powered EH sensors to perform stable operations without
external support from online weather forecasting services.

2. Dynamic energy scheduling algorithm. DynaES’
scheduling algorithm shows effective utilization of harvested
energy for sensors. This algorithm dynamically adjusts the
intervals and frequency of sensing operations, ensuring high
energy efficiency and preserving sensing data quality.

3. A thorough evaluation with a realistic simulation
study. We perform a thorough simulation study to evaluate EH
environmental sensors’ operations. Our simulation study uses
real-world public datasets as inputs, and the trustworthiness
of the simulation is enhanced by incorporating actual mea-
surement data of predictors and sensors. We evaluate various
performances of DynaES, including power gain prediction,
operation times, and sensing frequency compared to baselines.

The rest of this paper is organized as follows: Section II
describes the detailed design of DynaES. Section III discusses
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Fig. 2. The overall design of DynaES

our evaluations of DynaES, focused on its power gain pre-
diction accuracy and energy scheduling efficiency. Section IV
provides a discussion regarding this study. Section V describes
related work. Finally, Section VI concludes this paper.

II. THE DESIGN OF DynaES

This section describes the detailed design of DynaES. Fig.
2 shows the overall design of DynaES that consists of two
main components: ESU’s DC power gain estimator (Section
II-A) and dynamic energy scheduler (Section II-B) for various
sensors. As stated in the introduction section, EH environmen-
tal sensors often have constraints, such as unreliable network
access, which prevents them from obtaining timely weather
information for future operational intervals. Consequently,
DynaES should be capable of knowing the future power gain
from solar energy. To achieve this, the DC power gain
estimator of DynaES predicts future power gain by utilizing
various parameters obtained by solar panels and equipped
sensors in the deployed system.

After obtaining the predicted power gain, the dynamic
energy scheduler in DynaES performs energy scheduling and
distribution for various sensors based on their priority. The
priority of each sensor is determined by its sensing objectives,
with input from domain experts. The goal of the scheduler is
to enable frequent operations of the more important sensors,
thereby ensuring that the EH environmental sensors achieve
their sensing goals efficiently while maintaining stable opera-
tions by avoiding a complete battery drain.

A. DC Power Gain Estimation

To design the DC power estimator, we start by investigating
the relationship between solar/environmental parameters and
DC power gain through solar panels. Unfortunately, there is no
single dataset/DB containing solar energy-related factors and
DC power gain. However, we found two datasets separately
containing solar and environmental factors (NSRDB [14]) and
DC power gain via photovoltaic solar energy (PVDAQ [15]).

Data preparation. NSRDB, maintained by the National Re-
newable Energy Laboratory (NREL), contains time-series data
of meteorological, environmental, and solar irradiance from
various locations across the U.S. The DB provides access
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Fig. 3. Correlation coefficient of environmental/solar-irradiation parameters
with DC power gain

to 19 critical environmental and solar-energy-related parame-
ters, including temperature, wind speed/direction, SZA, GHI,
and other essential information. While NSRDB has various
time-series data regarding environmental parameters and solar
irradiance, it lacks information connecting DC power gain
leveraging solar irradiance and other factors. Therefore, we
decided to merge NSRDB with PVDAQ DB.

PVDAQ is also collected and maintained by NREL. The
datasets contain large-scale time-series data of PV (Photo-
voltaic) system metadata (e.g., PV system models and dimen-
sions of solar panels) and performance data (e.g., DC power
gain) from various experimental and public PV sites across the
U.S. To merge these two separate datasets, we first found data
chunks collected in the same locations and same measurement
periods. One challenge in the data integration was that PVDAQ
often had missing data points (data in specific months or days),
so we had to focus on generating the longest continuous data
from two DBs. Specifically, we could create integrated datasets
from 2015 to 2018 containing all parameters in both DBs.

Estimating future changes in GHI and environmental
parameters. With the integrated datasets, we performed cor-
relation analysis to find the most significant environmental
parameters to determine the DC power gain. Fig. 3 shows the
correlation coefficient of various parameters (in NSRDB) with
determining DC power gain (in PVDAQ), and we observed
that GHI, temperature, and SZA are strongly or moderately
correlated with DC power gain.

GHI refers to the amount of solar irradiance received by
a solar panel on a horizontal surface [16]. GHI is directly
linked to the amount of energy the solar panel can generate.
Additionally, the efficiency of a solar panel in energy genera-
tion is directly impacted by ambient temperature. SZA is the
angle between the sun and the zenith and can be an important
factor in determining the amount of sunlight that a solar panel
receives at different times of day and year [17]. When SZA
is low, the sun is closer to the zenith, and the panel receives
more direct sunlight, resulting in increased power generation.
Conversely, when the SZA is high, the sun is farther from the
zenith, and the panel receives less direct sunlight, resulting in
reduced power generation. Therefore, these three parameters
can be useful in predicting future DC gain. Please note that

TABLE I
ACCURACY, OVERHEAD, AND POWER CONSUMPTION MEASUREMENT

RESULTS OF THREE PREDICTION MODELS ON RASBERRY PI. THE BOLD
VALUES ARE THE BEST RESULTS WE OBTAIN IN THE MEASUREMENT.

Accuracy
(RMSE)

Overhead (Time in Sec.) Power Consumption (mAh)
Inference Training Inference Training

HWES 150.8 0.04 – 0.01 –
NP 179.0 1.56 91.68 0.25 18.62
LSTM 117.9 6.45 138.41 0.99 25.52

while we analyzed the coefficient of all 19 parameters, Fig. 3
only reports the three most important parameters.

To estimate the future DC power gain, it is critical to know
the future changes of GHI, SZA, and temperature. Moreover,
the estimation of future parameter changes needs to be per-
formed on a computing board deployed together with EH
sensors. Therefore, we should carefully decide to use proper
predictors for these parameters based on their performance and
power consumption (as the predictors should not consume a
significant amount of power in the sensing system). For the
predictor selection, we tested three time-series predictors from
deep-learning and statistical learning approaches: long short-
term memory (LSTM) [18], NeuralProphet (NP) [19], and
Holt-Winters exponential smoothing (HWES) [20] methods.

LSTM is a type of recurrent neural network (RNN) designed
for sequence or time-series predictions. In each inference
task, LSTM generates both a prediction and hidden states.
Specifically, the hidden states are passed back into the model
for the next prediction during each inference. These hidden
states store valuable information about the sequence of data,
such as long-term and short-term trends in time series, which
can assist in making accurate inferences [18]. LSTM can be a
suitable choice for predicting future parameter changes since
the seasonal period of each parameter could extend up to 3
months (the average length of a meteorological season). In
such cases, the long-term memory of LSTM can be useful.
Additionally, even within a specific season, environmental
parameters can have fluctuations. Therefore, the short-term
memory of LSTM can be beneficial in such cases.

NP is also designed for time-series predictions with support-
ing automatic detection of trends and seasonality in the given
time-series dataset. NP is known to be an efficient approach
in various time-series prediction problems [19]. And finally,
HWES is a lightweight and widely used time series model
focusing on capturing trends and seasonality in its forecasting.
We chose HWES as it is lightweight (potentially consuming
less power), and the parameters (e.g., GHI and temperature)
we want to predict can have strong seasonality.

To determine the proper predictor, we examined three
candidates with GHI prediction, as GHI is the most impor-
tant contributor to determining DC power gain. This test
was performed on Rasberry Pi 4B, a widely used general-
purpose computing board. We measured the prediction accu-
racy (RMSE), overhead in the training model and performing
inference tasks, and actual power consumption. Specifically,
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Fig. 5. Accuracy evaluation results of three DC regressors

we used INA-2191, a voltage, current, and power measure-
ment chip, for measuring the power consumption of the models
on the computing board.

The measurement results are reported in Table I. LSTM
produced the most accurate prediction results but required
higher computation time in training and inference than the
other two models. LSTM’s power consumption measurements
on Raspberry PI were 0.99mAh (inference) and 25.52mAh
(training). On the other hand, HWES showed a significantly
lower overhead than the two other models, and its power
consumption was also negligible. But its prediction accuracy
was worse than LSTM (but better than NP).

As both LSTM and HWES models have strengths and weak-
nesses, we decided to use different predictors for estimating
different parameters based on their significance. Specifically,
LSTM is used for GHI predictions due to its strong correlation
coefficient (0.9) with DC power gain. DynaES can leverage the
accurate prediction results powered by LSTM. For example,
Fig. 4 shows 3-day GHI prediction results by LSTM, and
the figure shows that LSTM could accurately predict the
GHI changes. Moreover, LSTM’s power consumptions were
only 0.99mAh (inference) and 25.52mAh (training), which
can be easily accommodated by the typical ESU’s capacity of
20,000 – 30,000mAh, given that training and inference will be
performed periodically (e.g., once a week). For the temperature
and SZA, we decided to use HWES as it has reasonable
prediction accuracy and negligible power consumption.

DC power gain regression. The next step is to design a
DC power gain regressor that takes three predicted parameters
from the previous step as inputs and estimates the future gains
of DC power in ESU. To achieve more accurate prediction,
this DC power regressor also leverages the history of DC

1https://www.ti.com/product/INA219

power gains. To incorporate the predicted parameters and the
DC power gain history, we considered various regressors,
including linear regression (LR) [20], support vector regression
(SVR) [20], and random forest (RF) [21] models.

LR is a commonly used approach for various regression
problems due to its intuitive nature. We also considered
the SVR because it can model both linear and non-linear
relationships between the parameters and DC power via the
kernel. Finally, we tested RF, which not only captures linear
and non-linear relationships (like SVR) but is also known
for its robustness to outliers and over-fitting. To compare the
accuracy of these three regressors, we randomly selected two
weeks of data from our dataset and assessed the performance
of each regressor on this data.

Fig. 5 shows the accuracy evaluation results of three DC
power regressors. Specifically, Fig. 5a reports the RMSE
results of all the predictions. Overall, RF showed significantly
higher accuracy than the other two regressors. For example,
RF’s RMSE results were 128 (week #1) and 108 (week #2),
but the other two regressors had around a RMSE of 155 (week
#1) and 133 (week #2).

Additionally, it is also important for the DC regressor
in DynaES to have minimal over-prediction cases. Over-
prediction occurs when the predicted DC power gain is higher
than the actual DC power gain, which can lead to several
scheduling issues. i.e., overly allocating energy to sensors,
resulting in more frequent sensing operations than future
energy gain. Fig. 5b shows the over-prediction rates of the
three regressors. Consistent with previous results, the RF-
based regressor showed the lowest over-prediction rates, with
38% (week #1) and 28% (week #2), respectively. In contrast,
LR had over-prediction rates of 65% and 59%, and SVR
showed over-prediction rates of 67% and 65% for weeks #1
and #2, respectively.

Our further analysis revealed that the better accuracy of
RF is mainly due to its robustness to outliers. For example,
DC power gain prediction relies on various parameters with
seasonality but can also be impacted by several intra-seasonal
variations (e.g., temperature changes within a specific season).
RF is an ensemble model that trains each constituent tree on
a random subset of the features, indicating that an outlier
variable would not affect the prediction outcome of all the
trees. Additionally, because the final prediction outcome is an
average of the prediction outcomes of each tree, the outlier
variable would have a reduced impact on the final prediction
outcome in RF compared to other models.

With accuracy and over-prediction rate evaluations, we
decided to use RF for our DC power regressor. The overall
prediction procedure is illustrated in Fig. 6. In summary, the
power gain estimation process in DynaES consists of two steps.
The first step (step #1 in Fig. 6) takes past time-series data
of GHI, temperature, and SZA and predicts future changes in
these parameters. In this step, a more accurate LSTM is used
to predict future GHI, while power-efficient HWES models
are used to predict other parameters. The DC regressor (step
#2 in Fig. 6) then utilizes RF to predict future (e.g., 1-week)
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power gain by taking predicted parameters (step #1) along
with the history of DC power gains. The output from the DC
regression will be predicted power gain for the next week
(hourly data for seven days, in total 24 × 7 predictions), which
is the energy budget for the dynamic energy scheduler in the
following subsection to facilitate further operations.

B. Dynamic Energy Scheduling

Given the prediction for future DC power gain (Sec-
tion II-A), the dynamic energy scheduler in DynaES creates
scheduling plans for each sensor. Our scheduling algorithm is
described in Algorithm 1. The scheduler takes the following
inputs: DC power gain prediction (Egain), sensor profile (SP ),
battery (ESU) profile (B), and scheduling time window (T ).
Specifically, T refers to the duration for which we intend to
schedule the power distribution to sensors in advance. And the
scheduler’s output is the scheduling plan for sensors during T .

The scheduler initiates the power distribution process by
computing the total (Etot) and accumulated energy (Eaccum)
for T (lines 1–5). T is a user-defined parameter (e.g.. one or
two weeks). Following this, the scheduler evaluates whether
Etot is sufficient to meet the minimum energy requirement
(B[min energy required]) for non-sensing activities, such
as power consumed by computing boards or other equipment
(line 6). If the energy is inadequate, then the EH sensor cannot
carry out any sensing operations during T (line 7).

The scheduler then assigns energy distribution priority (Epr)
to each sensor (s,∀s ∈ SP ) based on each sensor’s priority
level (s[priority]) in line 9 and allocates energy for each
sensor accordingly (Es

alloc) as described in line 10. Subse-
quently, the scheduler calculates the frequency (line 11) and
interval (line 12) for each sensor during T . Also, the shortest
sensing period is calculated as the sensing time (line 12). For
the sensors that have the shortest sensing period are selected
to be scheduled (line 14). Next, the scheduler calculates the
required energy (Ereq) to execute all sensing operations (line
15) and searches the time that has enough energy in Eaccum

to determine the termination time (Tend) of sensing operations
(lines 16-21). Finally, the scheduler generates the schedule
plan, which includes the calculated sensing interval Tend and
all sensors (Ss

min period) for the sensing operations.

III. EVALUATION OF DynaES

Our evaluation aims to assess the performance of the
DC power estimator and energy scheduling in DynaES. The
accuracy of the DC power estimator is critical for DynaES

Algorithm 1: DynaES Energy Scheduling Algorithm
Input: DC power (energy) gain prediction: Egain,

sensor profile: SP , battery profile: B,
scheduling time window: T

Output: sensor schedule plan: sched
1 initialize hourly accumulated energy

Eaccum[0] = Egain[0] +B[current level]
2 calculate total energy amount over T

Etot = B[currrent level] + sum(E)
3 for t ∈ [1, T ] do
4 Eaccum[t] = Eaccum[t− 1] + Egain[t]
5 end
6 if Etot ≤ B[min energy required] then
7 sleep(T )
8 end
9 calculate energy priority ratio

Epr = Etot ÷
∑

s∈SP s[priority]
10 calculate energy allocation to each sensor

Es
alloc = Epr × s[priority]

11 calculate number of sensing operations for each sensor
Ss
ops = Es

alloc ÷ s[consumption]
12 calculate the sensing period for each sensor

Ss
period = T ÷ Ss

ops

13 choose the shortest sensing period
T min = min(Ss

period)
14 choose sensors with the shortest sensing period

Ss
min period = {s : Ss

period == T min ∀ s ∈ SP}
15 calculate the energy required for the schedule

Ereq = B[base consumption] +∑
s∈SP Ss

min period × s[consumption]

16 for t ∈ [T min, T ] do
17 search for the sufficient energy time
18 if Eaccum[t] > Ereq then
19 Tend = t
20 end
21 end
22 return [Ss

min period, Tend]

as it predicts future energy gains for scheduling operations.
We measured the accuracy (RMSE) and over-prediction rate
of the DC power estimator, as well as the impact of various
parameters on producing accurate prediction results.

Additionally, the performance evaluations of the dynamic
energy scheduler were based on simulations with realistic
scenarios of EH environmental sensors. Specifically, we mea-
sured changes in energy charging level in ESU, sensing
operation frequency, and sensing intervals in DynaES with
various sensors. Furthermore, we compared the performance of
our dynamic energy scheduling against three baselines: static,
adaptive energy scheduler, and AsTAR.

Evaluation dataset. As discussed in Section II-A, we merged
two publicly available datasets collected by NREL to create
new datasets. For the performance evaluation, we prepared



datasets for a two-year period (2017-2018). The datasets
include GHI, temperature, SZA parameters, and DC power
gain in the Denver area, CO. It is worth noting that the dataset
used to design DynaES was not used for its performance
evaluation to ensure a fair evaluation.

Simulator design and implementation. We developed a
trace-based simulator modeled on the behavior of environ-
mental sensors in EH systems. The simulator has four main
components: a timer, an energy generator, a battery, and a
scheduler. The timer component is responsible for controlling
the simulation time. The energy generator takes a trace file
containing time-series data of GHI and other environmental
parameters as input and generates corresponding values for
GHI, temperature, and SZA at predefined simulation times.
The battery component mimics the behavior of ESUs in
EH sensors. This component simulates power charging and
discharging functions and generates a trace of the DC power
history, which is used by the scheduler component. The
battery leak function is also implemented to simulate the
real-world behavior of batteries. The scheduler is the core
unit of the simulator and performs critical operations. This
component predicts DC power gain, schedules energy delivery
to sensors, traces all sensor operations and coordinates other
system functions. This component ensures that the simulator
accurately mimics the behavior of EH systems in real-world
scenarios. This simulator is written in Python. Pandas2

[22] and Numpy3 [23] libraries are used to process the time-
series data. Scikit-learn4 [24] and TensorFlow5 [25]
are used to implement RF and LSTM models.

A. Accuracy of DC Power Gain Estimation

Dataset for power gain estimation. We used 12 weeks of data
spanning from September 2017 to August 2018. Specifically,
we tested the estimation accuracy of the first week of every
month over a one-year period, resulting in a total of 12
prediction tests. This allowed us to determine if the DC power
gain estimator consistently yields high prediction accuracy.

Power gain estimators. While we previously revealed that
GHI is the most important parameter for predicting future
DC power gain (in Section II-A), we also wanted to evaluate
the contribution of other parameters, such as temperature, and
SZA. To this end, we created three different versions of the DC
power gain estimator, which are DynaES’ DC power estimator,
a DC power estimator utilizing GHI and DC power history,
and a power estimator using only DC power history.

Evaluation results. Fig. 7 shows the accuracy results of the
three power estimators. Specifically, as shown in Fig. 7a,
DynaES’ power estimator outperformed the other two models
and consistently produced prediction results with low predic-
tion errors. On average, DynaES’ estimator had a RMSE of

2https://pandas.pydata.org
3https://numpy.org
4https://scikit-learn.org
5https://www.tensorflow.org

96. The second estimator (Est.(GHI + DC) in the figure),
which utilizes GHI and DC power history, had a RMSE of 143,
which is 50% higher than DynaES. As this estimator does not
take into account the other three environmental parameters,
the results indicate that both temperature and SZA parameters
significantly contribute to reducing prediction errors. The
third estimator (Est.(DC Only) in the figure), which only
utilizes DC power gain history, had the highest prediction
errors with a RMSE of 190, significantly higher than DynaES.
Moreover, the accuracy of the third estimator was much more
variable than DynaES and the second estimator. This finding
highlights the importance of GHI and other parameters in
improving the prediction accuracy of future DC power gain.

Fig. 7b reports the over-prediction rates of all three power
estimators. Over the one-year evaluation period, DynaES had
an over-prediction rate of 14% – 35%, with an average over-
prediction rate of 25%. DynaES consistently generated lower
over-prediction rates (32% – 47% lower) than the other two
estimators, which can lead to more stable management in
energy scheduling to target sensors.

B. Energy Scheduling Evaluation
This evaluation is to test the effectiveness of the energy

scheduling algorithm in DynaES. Our evaluation involves
monitoring changes in the charged energy levels of the ESU,
as well as adjustments in the sensing frequency and intervals.
Specifically, monitoring charged energy-level changes in the
ESU is to assess whether the EH sensors can operate efficiently
without a complete power drain. Furthermore, changes in
sensing frequency and intervals are also essential metrics,
as the EH sensors should not compromise their performance
simply to conserve energy for longer operation hours. To
ensure efficient functionality, the energy scheduling algorithm
in DynaES should be capable of maintaining the frequency and
interval for each sensor based on its priority while considering
the dynamics of the charged energy level.

Sensor and ESU models in simulation. We consider the
deployment of an EH system with four sensors, including
temperature, pH, EC, and ORP sensors. We assume that
temperature and pH sensors have higher sensing priority
(more frequent sensing operation, e.g., two operations per
hour) and EC and ORP sensors have lower priority (e.g.,
one operation per hour). For realistic simulation, we profiled
the power consumption of all the sensors using the same
approach used in Section II-A and used the profiled data
as simulation parameters. For the ESU models, we modeled
ESU components in our simulator based on battery packs with
20,000 and 30,000mAh, commonly available on the market.

Dataset for scheduler evaluation. We randomly picked five
individual weeks in our dataset. Three weeks are selected from
2017, and two weeks are chosen from the 2018 dataset.

Baselines. Static energy scheduler (ES-stat), adaptive en-
ergy scheduler (ES-adap), and AsTAR are used as base-
lines. ES-stat performs sensing operations based on a pre-
determined sensing interval. As ES-stat does not consider
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Fig. 7. Accuracy evaluation results of three DC power gain estimators. (a) shows RMSE results for 12 weeks (the first week of every month) from September
2017 to August 2018. (b) shows the over-prediction ratio of three estimators. Please note that Est.(GHI + DC) in the figure indicates the DC power estimator
using GHI and DC power history, and Est.(DC Only) is the estimator only using DC power history.
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(b) 2nd Week in November (2017)

Fig. 8. Evaluation results of energy scheduling performed by DynaES, ES-stat, ES-adap, and AsTAR. (a) represents the evaluation results with a 20,000mAh
of battery capacity in the 4th week of December 2017, and (b) shows the results with a 30,000mAh of battery capacity in the 2nd week of November 2017.
The upper graphs show the battery level changes (charged by solar panel and the battery consumption by sensing operations) during evaluation weeks. The
lower graphs represent the sensing operation frequencies.

the changes in the ESU’s energy level or other environmental
dynamics, ES-stat is to show the baseline performance of
the energy scheduler in EH sensors.

ES-adap dynamically adjusts sensor operation frequencies
based on the current energy level in the ESU. ES-adap starts
scheduling by checking if the current energy level exceeds
a threshold set to decrease the chance of complete battery
drain. If the current energy level is higher than the threshold,
ES-adap enables sensing operations. After each sensor op-
eration, ES-adap updates the energy level by calculating the
energy gain and drain from the sensors. It then determines the
next sensing interval by calculating α× battery level−threshold

threshold ,
where α is a scaling factor used to regulate the energy-capacity
scaling. In this way, ES-adap adjusts the sensing interval
based on the current energy level. Thus, when the battery
level is higher, ES-adap schedules more frequent sensing
operations, and when the battery level is lower, it schedules
fewer sensing operations.

AsTAR [26] is an energy scheduler focused on performing
energy-aware adaptation for sensor tasks. It aims to balance
the trade-off between higher temporal resolution of sensed
data and increased energy consumption. AsTAR is designed
to operate without benchmarking or environmental modeling,
instead observing and reacting to the system state at runtime.
This energy scheduler is also designed to address platform het-

erogeneity and unpredictable energy-harvesting environments.

Evaluation results. We performed energy scheduling in the
five weeks in 2017 and 2018 and measured energy level
changes in the ESU and sensing frequency (interval) in the
five weeks. Fig. 8 reports the energy scheduling results in
two weeks. Please note that we only show two weeks’ results
due to the page limit, and the other three weeks had similar
results. As shown in the upper graphs of Fig. 8 (the changes in
battery level), DynaES demonstrated its ability to effectively
manage battery levels and enable more frequent sensing oper-
ations without fully depleting the battery. Although there were
fluctuations in the charged battery level, these fluctuations
were primarily due to weather dynamics. Conversely, the other
three baselines could not support sustainable operations of
EH sensors. For example, ES-stat experienced a complete
battery drain on day 1 of both weeks and thereafter, ES-stat
only conducted very limited sensing operations. ES-adap per-
formed better than ES-stat. However, ES-adap and AsTAR
also encountered a complete battery drain on days 3 and 4 of
Fig. 8a and day 3 of Fig. 8b, leading to limited support for
future operations due to the shortage of charged energy.

The lower graphs of Fig. 8 further illustrate the sensing
operation frequencies performed by DynaES and three base-
lines. The results show that DynaES enabled 1.8× – 4× more
frequent sensing operations, indicating that DynaES does not
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sacrifice the frequency of its sensing operations to conserve
more energy. By conducting more sensing operations, the
EH sensors equipped with DynaES can collect more data
from its sensors, thereby facilitating the achievement of the
sensors’ objectives. Moreover, we observed that DynaES could
dynamically adapt the sensing interval based on the charged
battery level. i.e., day 4 of Fig. 8b’s lower graph. DynaES
extended the sensing interval to prevent the complete battery
runout because the less energy gain on day 4 was predicted
from the DC power gain estimator.

Fig. 9 shows the CDF of the sensing interval for the
four schedulers. The results show that the sensing intervals
for DynaES were consistently smaller compared to the three
baselines. Conversely, the three baselines exhibited long-tail
distributions of sensing intervals, indicating their inability
to support consistent sensing operations. By having shorter
sensing intervals (without long-tail distribution) in Fig. 9
and higher sensing frequency in Fig. 8, DynaES can support
more frequent and consistent sensing operations, leading to
improving the sensing quality of EH sensors.

In this evaluation, we showed that DynaES outperformed the
three baselines. The better performance of DynaES is primarily
due to its accurate prediction of future power gain using
various parameters and its scheduling algorithm, which can
dynamically adjust scheduling intervals to manage the battery
level, thereby supporting sustainable overall runtime of EH
sensors with increased frequency of sensing operations.

IV. DISCUSSION

This study presents DynaES, an energy scheduler for EH
sensors without reliable network access to online weather
forecasting APIs. DynaES uses a DC power gain estimator to
predict future solar panel power gain for ensuring sustainable
sensor operations. However, to utilize DynaES, EH sensors
should be capable of collecting GHI, temperature, and SZA
parameters. This section discusses two key questions for
adopting DynaES in real-world deployments: 1) how to obtain
GHI and other parameters for EH sensors, and 2) DynaES’s
performance when GHI and other parameters are not available.

A. Question 1: How to collect GHI, SZA, and temperature
parameters in in-situ EH sensors.

A pyranometer can collect GHI parameters [16]. A typical
pyranometer setup includes a light sensor that filters out non-
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Fig. 10. Changes in energy level by four schedulers. DynaES (all) refers to
DynaES with DC power gain prediction using GHI, SZA, temperature, and
DC power history. DynaES (DC only) only uses DC power gain estimation
using DC power history. All the dots on the lines indicate sensing operations.

sunlight waves. This light is then converted into thermal
energy, which is subsequently transformed into electricity
using a thermoelectric device, such as a thermopile.

In a practical deployment of EH sensors, a pyranometer can
be installed near or alongside the EH sensors to collect GHI
data. This information can then be utilized in our DC power
gain estimator in DynaES. Furthermore, the pyranometer can
help to enhance the prediction accuracy of our power gain
estimator by comparing the predicted GHI parameters against
the pyranometer’s actual measurements.

In addition, SZA parameters [17] can be calculated using
equations that utilize the current time and location coordinates
(longitude and latitude). Temperature parameters can be ob-
tained using low-cost sensors widely available on the market.

B. Question 2: The performance DynaES without GHI, SZA,
and temperature parameters.

Given the critical role of GHI along with SZA and temper-
ature parameters in estimating future DC power gain, we seek
to determine whether DynaES can still effectively schedule
energy to sensors even without GHI, SZA, and temperature
parameters, as these sensors (e.g., pyranometer) may not
always be available in real-world deployment scenarios. In this
discussion, we evaluate the performance of DynaES powered
solely by DC power gain prediction with historical DC power
information, which can be easily obtained by APIs supported
by commercial battery packs.

Fig. 10 illustrates the changes in energy levels of four
schedulers; DynaES(All), DynaES(DC only), AsTAR (base-
line), and ES-adap (baseline). DynaES(All) employs all
parameters for DC power gain prediction, while DynaES(DC
only) only uses DC power history for energy-gain prediction.
The results show that DynaES(DC only) was not able to
maintain the same energy level as DynaES(All) due to
lower accuracy of future energy gain prediction. However, it
showed higher efficiency than the baseline by managing the
battery level and performing more sensing operations (dots on
lines). Notably, DynaES(DC only) was observed to perform
a similar frequency of sensing operations with DynaES(All).

Additionally, we measured the sensing intervals performed
by the schedulers. Fig. 11 reports the CDF of the sensing
interval. The results show that DynaES(DC only) had sim-
ilar sensing intervals to DynaES(All), with only the lower
20% of sensing intervals being slightly longer than those
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of DynaES(All). Specifically, we did not observe a long-
tail distribution of sensing intervals in DynaES(DC only),
suggesting that it can support sufficiently frequent sensing
operations despite relatively inaccurate DC power gain esti-
mations.

V. RELATED WORK

A. Weather forecasting for EH sensors.

Exponentially weighted moving average (EWMA) is a com-
monly used approach for weather prediction in EH sensors
due to its lightweight nature [27], [28]. However, in Section
II-A, HWES (a type of EWMA) was shown to have lower
accuracy compared to more advanced LSTM models. While
we used HWES, it is only for less significant parameters
(e.g., temperature). Guermoui et al. [29] utilized SVR to
predict solar irradiance and demonstrated higher accuracy than
a prediction model based on Multi-layer Perceptron. However,
this approach did not consider other important parameters for
predicting solar irradiance. Jalali et al. [30] used a variation
of LSTM to predict GHI with historical data from weather
stations, while Capizzi et al. [31] employed a different vari-
ation of RNN to predict GHI by incorporating other weather
parameters. However, both approaches only provided short-
term predictions of GHI (e.g., 2 days). In contrast, DynaES
can produce GHI predictions for a much longer period (at
least weeks). Moreover, our prediction goal is not only to
predict GHI but also eventually estimate DC power gain by
incorporating other important parameters.

Sharma et al. [32] developed an approach to predict the
energy harvested from natural sources (e.g., solar and wind) by
combining forecast data (cloud coverage) from online weather
forecasts [9] with data collected from weather stations. While
their approach shares a similar goal with the DC power gain
estimator in DynaES, we did not consider cloud coverage from
weather forecasts for power gain prediction. Furthermore, the
DC power gain estimator in DynaES focuses on capturing the
seasonality in various environmental parameters. Importantly,
DynaES can be utilized for EH sensors without network access
to obtain online weather forecasting information.

B. Sensor scheduling in EH sensors.

Limited energy is a major challenge for EH sensors, and
several schedulers have been proposed to tackle this problem.

Kansal et al. [28] designed a greedy algorithm that adjusts
sensing intervals according to sensing frequency requirements,
but their approach did not consider the power consumption
of each sensor. Caruso et al. [33] and Loreti et al. [34]
addressed scheduling using optimization techniques. Yang et
al. [26] also developed the AsTAR task scheduler that adjusted
sensing intervals based on available energy. However, all these
approaches did not consider each sensor’s priority. In contrast,
DynaES schedules sensors with different priorities by giving
high-priority sensors more energy and scheduling priority to
achieve their sensing goals, unlike most existing approaches
that use a fixed sensor priority. Moreover, in our evaluation, we
compared DynaES against AsTAR, and DynaES significantly
outperformed AsTAR by performing more frequent sensing
operations and having longer operation hours.

VI. CONCLUSION

This work presents DynaES, a new energy scheduler for
solar-powered EH environmental sensors, which are deployed
in environments without access to weather information net-
works. We designed DynaES with two components: a DC
power gain estimator and a dynamic energy scheduler. For the
DC power gain estimator, we first merged two datasets and
then used deep learning and statistical time-series approaches
to predict changes in GHI, SZA, and temperature parameters to
estimate future DC power gain. DynaES schedules energy dis-
tributions to each sensor based on priority, dynamically adjusts
sensing intervals/frequency and ensures energy efficiency and
data quality. Evaluation results showed that DynaES accurately
predicts future energy gain and effectively schedules energy to
support more frequent operations and longer battery life. In the
near future, we plan to deploy solar-powered EH sensors with
DynaES and evaluate the efficacy and performance of DynaES
in a real-world deployment.
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