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Abstract—To effectively utilize cloud computing, cloud practice
and research require accurate knowledge of the performance of
cloud applications. However, due to the random performance
fluctuations, obtaining accurate performance results in the cloud
is extremely difficult. To handle this random fluctuation, prior
research on cloud performance testing relied on a non-parametric
statistic tool called bootstrapping to design their stop criteria.
However, in this paper, we show that the basic bootstrapping
employed by prior work overlooks the internal dependency
within cloud performance test data, which leads to inaccurate
performance results.

We then present Metior, a novel automated cloud performance
testing methodology, which is designed based on statistical
tools of block bootstrapping, the law of large numbers, and
autocorrelation. These statistical tools allow Metior to properly
consider the internal dependency within cloud performance test
data. They also provide better coverage of cloud performance
fluctuation and reduce the testing cost. Experimental evaluation
on two public clouds showed that 98% of Metior’s tests could
provide performance results with less than 3% error. Metior also
significantly outperformed existing cloud performance testing
methodologies in terms of accuracy and cost – with up to 14%
increase in the accurate test count and up to 3.1 times reduction
in testing cost.

I. INTRODUCTION

Cloud computing is widely adopted today due to its high
cost-efficiency. To effectively utilize the cloud, cloud users
need to have accurate knowledge of the performance of
their applications. Accurate knowledge of cloud performance
allows them to determine whether a virtual machine (VM)
configuration (e.g., type and count of VMs) or an auto-scaling
policy satisfy their performance requirements [1–3]. Accurate
performance data are also required for cloud research to
evaluate new optimization algorithms or to be used as the
training and testing data to develop new models [1, 4–9].

Performance testing is a standard procedure to obtain
the performance for any applications [10, 11]. For a cloud
application, performance testing can be used to obtain its
performance results as point estimates. That is, to obtain the

mean or the percentile of its performance, such as the mean
throughput or 90%ile execution time [9, 12, 13]. There are
two fundamental requirements for cloud performance testing.
First, the performance results should be accurate. Second, as
cloud performance testing also incurs cloud usage expenditure,
this testing should not cause excessive cost.

Performance testing is typically conducted by repeatedly
executing the application-under-test (AUT) with a set of
representative workloads/inputs until a stop criterion deems
that the results obtained from the test are accurate. This stop
criterion is the key to ensure the above two requirements are
satisfied. However, as shown in prior work, due to the random
performance fluctuation [12–17], it is extremely challenging
to design good stop criteria for cloud performance testing.

To handle the random performance fluctuation, prior stud-
ies relied on non-parametric statistics tools to design their
stop criteria. In particular, prior studies have employed non-
parametric bootstrapping, which is a re-sampling technique
used to calculate the confidence interval (CI) of a performance
testing result (e.g., the CI of the mean performance) [9, 12, 13].
The confidence interval is typically viewed as the margin-of-
error [18, 19]. Therefore, if the width of the confidence interval
is smaller than a (user-) predefined maximum allowed error,
the performance result is deemed accurate enough and the
performance test can be stopped.

Unfortunately, prior work had shown that the performance
testing methodology using bootstrapping cannot always pro-
vide accurate performance results [13, 20]. Prior work con-
cluded that the inaccuracy was partially caused by the test’s
incomplete coverage of the cloud performance fluctuations.
However, in our research, we discovered that there is another
fundamental issue related to the bootstrapping methodology.

In this paper, we first present an analysis of the existing
bootstrapping-based testing methodology [12]. This analysis
reveals a critical issue with this methodology that is unknown
to the current research – the overlooked internal dependency



within the performance test data. Because cloud performance
fluctuation is mainly caused by the hardware resource con-
tention from multi-tenancy (i.e., cloud applications/VMs shar-
ing hardware) [15, 21], the performance data obtained from
the tests are internally correlated. That is, the performance data
from continuous tests within a short period are similar to each
other, and the performance fluctuations may also have repeated
patterns. However, the basic bootstrapping employed by prior
studies does not consider this internal dependency, causing
incorrectly calculated confidence intervals, which in turn,
lead to incorrect performance results. Consequently, a new
performance testing methodology that considers the internal
dependency of cloud performance tests is required.

Moreover, our analysis also shows that an advanced boot-
strapping technique originally designed for time series data,
called Block Bootstrapping, can retain the internal dependency
during the re-sampling [22]. Hence, it may provide more
accurate performance results. Nonetheless, blindly applying
block bootstrapping does not guarantee accurate results, as
its block size must be tuned for individual cloud applications
and cloud platforms. Moreover, enough tests must also be
conducted to fully cover the potential cloud fluctuations.

Based on the above analysis, we developed Metior, a novel
automated cloud performance testing methodology. Metior
has two components. The first component is the new stop
criterion to determine when performance tests can be stopped
and accurate performance results are obtained. The new stop
criterion is based on block bootstrapping and the “law of
large numbers.” Block bootstrapping allows Metior to properly
consider the internal dependency of performance test data,
while the “law of large numbers” ensures good coverage of
cloud performance fluctuations. To handle the varying block
size, Metior employs a novel technique that can automatically
determine the best block size for each cloud application and
platform [23]. The second component is the low-cost test
execution strategy. As the performance of continuous tests
is similar to each other, there is no need to continuously
execute the AUT. Therefore, Metior executes the AUT in small
intervals/periods (one day) and intermittently (4 executions
per hour) to reduce the overall number of executions and the
associated cloud usage cost. We also provided a systematic
approach to determine the interval length and the frequency
of the intermittent execution using the aforementioned best
block size and autocorrelation [24]. Metior is implemented
as a fully automated performance tester for several public
clouds, including Amazon Web Services (AWS) [25], Google
Cloud [26], and Chameleon cloud [27].

We evaluated Metior with six benchmarks on two public
clouds, AWS [25] and Chameleon [27], using six different
VM configurations. The results show that Metior can provide
accurate performance results – among the thousands of tests
conducted, 98% of them provided performance results with
less than 3% errors. Metior also significantly outperformed
existing cloud performance testing methodologies in terms of
accuracy and cost – it could increase accurate test count by
up to 14% and reduce the testing cost by up to 3.1 times. We

also applied Metior to a state-of-the-art cloud performance
prediction technique. The evaluation results showed that by
providing more accurate training data, Metior could improve
the accuracy of the prediction technique by 17.3% on average.

The contributions of this paper include:
1. An analysis of the basic bootstrapping which reveals that

the overlooked internal dependency of cloud performance test
data caused inaccurate cloud performance results.

2. A reliable and automated cloud performance testing
methodology, Metior, which is designed based on block boot-
strapping, the law of large numbers, and autocorrelation.

3. A thorough evaluation of Metior on two public clouds
with 33 different benchmarks/VM configurations to show the
accuracy and cost benefits of Metior.

4. A case study showing how Metior benefits recent cloud
research by bringing in reliable performance results.

The rest of this paper is organized as follows: Section II
provides the analysis on the basic bootstrapping; Section III
presents the design of the Metior; Section IV provides ex-
perimental evaluations. Section V presents a case study of
applying Metior in cloud research. Section VI discusses the
limitation of Metior. Section VII discusses related work, and
Section VIII concludes the paper.

II. ANALYSIS OF BOOTSTRAPPING CLOUD PERFORMANCE

A performance test typically involves repeatedly executing
the AUT with one or more representative inputs. For each
execution, the performance data, such as the execution time,
latency, or throughput, are recorded. Based on the performance
data from a series of executions, the performance testing
result, such as the mean latency or 90%ile execution time, can
be calculated. The confidence interval (CI) of the performance
testing result can also be calculated, which is usually viewed as
the margin-of-error of this result [18, 19]. The width of this
CI is usually used as the stop criterion of the performance
test– if the CI width is smaller than a user-defined maximum
allowed error (e.g., 3% maximum error), then the test can be
stopped [12, 19]. In this paper, we call a performance testing
result accurate if it indeed has an error less than the maximum
allowed error.

For non-cloud performance testing, the CIs are usually
computed using t-value or z-value, assuming the performance
is normally distributed [19]. However, the performance of
cloud applications is usually not normal [13]. Therefore, cur-
rent research employed a non-parametric statistics technique,
bootstrapping (BT), to calculate the CIs for cloud performance
testing results [9, 12, 28, 29]. Unfortunately, the performance
tests conducted with the current bootstrapping-based method-
ology tend to provide inaccurate results. This section provides
an analysis of the cause of this inaccuracy.

A. Background on Bootstrapping

Basic Bootstrapping. Bootstrapping (BT) is essentially a
resampling technique. Without loss of generality, here we
show how to use bootstrapping to determine the CI of the
90%ile execution time of some performance test data with a
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Fig. 1. Examples of resampling and computing CIs with two bootstrapping methods.

95% confidence level (CL). Let S be the set of execution times
obtained from a performance test with n repeated executions.
That is, |S| = n. Let θ be the 90%ile execution time calculated
from S. A resample of S, denoted by S∗, is constructed
by randomly selecting execution times from S. Figure 1a
illustrates the construction of S∗ [29, 30]. Each selection
randomly picks one execution time from S. This selection is
then repeated for n times to select n execution times from S
with replacement. These n execution times constitute S∗.

The resampling is repeated for c times to generate c
resamples, denoted by S∗1 , S

∗
2 , . . . , S

∗
c . Usually, c should be

larger than 1000 for bootstrapping to work properly [29, 30].
For each resample, its 90%ile can be calculated, providing c
90%ile execution times. Let these 90%iles be θ1, θ2, . . . , θc.
In bootstrapping, the empirical distribution constructed from
these 90%iles is considered as a close approximation of the
distribution of θ (the 90%ile of S). Therefore, the center 95%
area of this distribution is then the CI of θ. More specifically,
θ1, θ2, . . . , θc are first sorted, and the 2.5%ile and 97.5%ile of
the sorted list are the lower and upper bounds of the CI.

Intuitively, bootstrapping works if the resampling on S
closely resembles how S is obtained from the real population.
S is essentially a random sample of the real population.
The resampling on S, in turn, views S as the population.
The resamples, S∗1 , S

∗
2 , . . . , S

∗
c , are then the random samples

of S. If the resampling process closely resembles how S
is sampled from the population, then the variation of the
resamples also closely resembles the variation when sampling
the real population. Therefore, the distribution of the resamples
can then be used to empirically calculate the CI for statistics
estimates of the real population. However, as we will show
later, the resampling process of basic bootstrapping does not
resemble how cloud performance data are obtained from the
real population, and hence, cannot always provide reliable CIs.
Block Bootstrapping. Block bootstrapping is mainly used to
bootstrap time series, where the data have internal depen-
dencies and/or seasonality [23]. Although performance test
data are not strictly time series, they still contain internal
dependencies. Therefore, after we discovered that the basic
bootstrapping could not preserve the internal data dependen-
cies during resampling, we started to experiment with block
bootstrapping, which considerably outperformed the basic
bootstrapping. Therefore, to provide a more comprehensive
analysis, block bootstrapping is also introduced here.

In block bootstrapping, a resample, S∗, is also constructed

from S using random selections. However, for each selection,
instead of just selecting one data point (e.g., one execution
time), a block of continuous data points is selected. By
selecting a block of data points, the internal dependency within
the data points is preserved. If there are b data points in a
block, then n

b random selections will be performed to obtain
S∗. Figure 1b illustrates the procedure of block bootstrapping.
Similarly to basic bootstrapping, c resamples are constructed,
and the CI was computed using these resamples.

Clearly, the size of the block (i.e., the number of selected
data points) is an important parameter. If the block is too large
or too small, then the internal dependency may be incorrectly
resampled. For this analysis, we used a fixed block size of 24.
However, in Metior, the block size is automatically adjusted
for each cloud application and cloud platform.

B. Cloud Performance Data Internal Dependency
and Bootstrapping

In this analysis, we used the performance test data provided
by the PT4Cloud data sets [13]. More specifically, the per-
formance data of two benchmarks, the ft from NAS Parallel
Benchmark Suite (NPB) [31] and InMemory Analytics (IMA)
from the Cloud Suite [32], on two public clouds, Chameleon
(CHM) and Amazon Web Service (AWS), are analyzed. For
each benchmark, its one-week continuous execution perfor-
mance data are used here. For Chameleon, the Large VM data
are used. For AWS, the m5.2xlarge VM data are used. More
details about these data sets are provided in Section IV.

1) Internal Dependence of Cloud Performance Test Data:
Figure 2 gives the trace of the execution times of IMA
when it was executed in AWS. Due to space limitation, we
cannot show the execution time traces for ft and Chameleon,
although the same conclusion can be reached with them. As
Figure 2 shows, the execution times of IMA had considerable
fluctuation, and these execution times showed some degree
of internal dependency and repeated patterns. In particular,
continuous executions had similar execution times.

In addition to the visual illustration, we also evaluated the
internal dependency of these performance test data quantita-
tively using Autocorrelation (ACF) [24]. ACF computes the
internal Pearson Correlation Coefficient (PCC) of a data set
– it computes the PCC between the original data set and a
derived data set obtained by shifting the data points in the
original data set by 1. Hence, ACF effectively evaluates the
internal dependency between two consecutive data points in
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Fig. 2. Traces of the execution times from a one-week performance test for IMA-AWS, including the original performance test data and two bootstrapped
resamples. Traces are down-sampled to 200 for better visibility.
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Fig. 3. Traces of the ACFs of 1000 resamples generated by two bootstrapping
methods for IMA-AWS, along with the ACF of the original testing data.

TABLE I
ACF FOR EACH BENCHMARK, AND THE AVERAGE ACF OF THE

RESAMPLES GENERATED BY TWO BOOTSTRAPPING (BT) METHODS.

Benchmark Original Basic BT Block BT
ft - CHM 0.24 0 0.23
ft - AWS 0.16 0 0.15
IMA - CHM 0.44 0 0.41
IMA - AWS 0.36 0 0.33

the series. Table I gives the ACF of the two benchmarks on
AWS and Chameleon. As Table I shows, the ACFs for these
benchmarks are above 0.1, indicating the existence of internal
data dependency [33].1

Prior studies on cloud performance also observed these
internal dependencies [13, 15]. The performance fluctuation
in the cloud is mainly caused by the hardware resource
contention between simultaneously running VMs [34]. As the
set of VMs that are running simultaneously usually do not
change rapidly, the performance of a cloud application usually
also varies little within a short period, which explains the
existence of the internal data dependency.

2) Bootstrapping and Internal Data Dependency: To il-
lustrate the impact of the internal data dependency on boot-
strapping, we applied the basic and block bootstrapping to
the four performance test data sets of ft and IMA. For each
bootstrapping, 1000 resamples were generated (i.e., c is 1000),
following the standard practice [29, 30].

Figure 2 also shows the traces of two resamples using the
basic and block bootstrapping for IMA on AWS. As Figure 2
shows, the basic bootstrapping resample is more random than
the block bootstrapping resample. Figure 3 gives the ACFs of
these bootstrap resamples for IMA on AWS, which reveals
the main issue of the basic bootstrapping – its resamples

1Note that, ACF and PCC evaluate the existence of linear correlation.
Because the internal dependency of cloud performance data is unlikely
strongly linear, the ACFs for cloud performance data are usually less than 0.5.
Here, we use ACF mainly to show the existence of internal dependency and
show that block bootstrapping preserves the same level of internal dependency.
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Fig. 4. The distributions and CIs for 90%ile execution times generated by
two bootstrapping methods. Shaded areas show the ranges covered by the CIs.

usually had very low ACF. For the majority of the basic
bootstrap resamples, the ACF was nearly 0, indicating that
these resamples nearly had no internal data dependencies.
However, the ACFs of the resamples from block bootstrapping
were usually close to the original performance data.

Table I also reports the average ACF of the two bootstrap-
ping methods for all four performance data sets, where the
basic bootstrapping has average ACFs of nearly 0. However,
block bootstrapping has average ACFs very close to the
original testing data, indicating that block bootstrapping can
indeed preserve a similar level of internal dependency.

Fundamentally, the resampling of the basic bootstrapping is
different than how the original performance data are collected.
In basic bootstrapping, the resampling assumes each execution
is independent. However, for the original test, consecutive
executions had similar execution environments (e.g., similar
co-running VMs). Hence, continuous executions are not inde-
pendent, unlike assumed in the basic bootstrapping. However,
the resampling in the block bootstrapping assumes consecutive
executions are correlated, and thus has a better resemblance
to the original performance test.

This difference in resample ACFs, in turn, leads to the
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differences of the CIs generated based on these resamples.
Figure 4 shows the CIs of the 90%ile execution time for each
pair of benchmark and cloud. As Figure 4 shows, the CIs
generated by the basic bootstrapping are usually smaller than
those generated by block bootstrapping. Smaller CI indicates
that basic bootstrapping estimated that the performance results
had smaller errors. However, if the estimated error is smaller
than the actual error, the users would incorrectly assume their
performance results are accurate and stop their tests too early.

At last, we conducted 100 performance tests using the
basic and block bootstrapping to test for the 90%ile execution
times of the above benchmarks. For these tests, the maximum
allowed error was set to be 3%. Therefore, the tests were
stopped when the CIs were smaller than (−3%,+3%). After
the tests, the accuracy of the 90%ile execution times was
compared with the ground truth 90%ile execution times,
where were calculated based on another 5-week data for each
benchmark from the PT4Cloud data set. Figure 5 gives the
number of accurate tests (i.e., had an error less than 3%).
As Figure 5 shows, for ft on both clouds and IMA on AWS,
block bootstrapping indeed increased the number of accurate
tests. Therefore, block bootstrapping should be used in cloud
performance testing than the basic bootstrapping.

For IMA on Chameleon, however, the testing result accuracy
was worse with block bootstrapping. The worse results were
due to two issues. First, the CIs were generated based on a
fixed set of testing data, and thus, may produce inaccurate
results if the test data do not cover all potential performance
fluctuations [13]. Second, we used a fixed block size (24) in
these tests. However, the proper block size depends on the
behavior of the cloud application and the cloud. This result
shows that block bootstrapping cannot be blindly applied to
cloud performance testing without addressing these two issues.

III. THE DESIGN OF Metior

This section presents our cloud performance testing method-
ology, Metior, which addresses the aforementioned two issues
of block bootstrapping. It also employs a periodical and
intermittent AUT execution strategy to reduce testing cost.

To address the incomplete test coverage issue, the stop
criterion used by Metior employs the “law of large numbers,”
with states that the experimental mean should be close to
the true mean when the number of trials is large and tend
to become closer to the true mean as the number of trials
increases [35]. For cloud performance testing, this intuition
may be rephrased as: if the mean from a large number of
executions in the cloud covers all potential fluctuations and is
close to the true mean, then adding a substantial number of

more executions should not significantly change the value of
the mean. Based on this intuition, the stop criterion of Metior
stops a test when the performance result obtained from the test
stays unchanged after adding significantly more executions.
Note that, although the “law of large numbers” is only about
the mean, this intuition can also be applied to percentiles of
the performance, as shown in Section IV.

To address the issue where the block size varies with cloud
application and cloud platform, we employed a methodology
developed by Politis and White to automatically select the
block size [23]. Intuitively, this automatic selection finds the
“optimal” block size using the minimum block size that
provides a non-negligible autocorrelation [23]. By adopting
the automatic selection technique, the “optimal” block size
allows block bootstrapping to retain similar level of internal
data dependency as the original sample. In Metior, for each
bootstrapping, this automatic block size selection is performed
so that each performance test uses its own block size.

Metior is implemented as a fully automated performance
tester. To apply Metior, its user only need to provide the
VM configuration, a cloud application (i.e., AUT) and its
input data, a maximum allowed error, and a confidence
level. Metior automatically allocates VMs, conducts tests, and
applies bootstrapping, using a cloud service’s programming
interface. Currently, Metior support cloud services including
AWS, Google Cloud, and Chameleon. Note that, Metior is
not designed to generate or prioritizing inputs. Instead, it is
designed to provide accurate cloud performance testing results
for any inputs.

A. Overview of Metior

Figure 6a gives the overall workflow of Metior. In Step 1,
Metior executes the AUT repeatedly for one day. Let the set
of performance data collected from these executions be S. In
Step 2, Metior executes the AUT repeatedly for another day
to obtain a new data set T . T is then combined with S to
obtain S′, i.e., S′ = S ∪ T . Note that, Section III-C provides
the rationale for conducting the tests in terms of days.

In Step 3, Metior compares S and S′ to determine if there is
a significant change in the performance results obtained from
S to S′. This comparison follows the intuition of the “law of
large numbers” – if the extra data in S′ does not significantly
change the performance results, then the performance result
from S is deemed accurate, and the test can be stopped.

However, if the change from S to S′ is significant, Metior
deems that more executions are required. Hence, in Step 4,
Metior let S′ become the S. It then goes back to Step 2 to
conduct more executions and collect more performance data to
generate a new S′. With the new S and S′, a new comparison
is performed at Step 3 to determine if the test can be stopped.

B. The Stop Criterion of Metior

Metior’s stop criterion uses block bootstrapping to deter-
mine if there is a significant change in the performance results
obtained from S and S′. Similar to existing cloud performance
testing methodologies, the user of Metior needs to select a
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Fig. 6. Overall workflow of using Metior to conduct a performance test.

maximum allowed error, denoted by e%, and a confidence
level, denoted by cl%. Metior uses block bootstrapping to
determine if the performance results obtained from S and
S′ have a maximum possible change (difference) larger than
e% with cl% confidence. If the maximum possible change
(difference) is less than e%, then Metior deems that S can
provide a performance result with less than e% error under
cl% confidence. This stop criterion is based on the following
intuition – if both S and S′ can provide accurate performance
results with less than e% error, then the maximum difference
between the performance results obtained from S and S′

should usually be smaller than e%.
Figure 6b gives the steps performed by Metior’s stop

criterion. These steps correspond to the internal operations
of Step 3 in Figure 6a. The first step of this stop criterion
(Step 3-1 in Figure 6b) is to calculate the performance results,
θ and θ′, from S and S′. Let the percentage difference of θ
and θ′ be δ% (δ% = θ′−θ

θ ). In Step 3-2, Metior calculates
the CI of δ% with cl% confidence. This CI represents the
maximum possible difference between the performance results
obtained from S and S′ with cl% possibility. This CI is
calculated using the comparison block bootstrapping with the
following procedure [30]. First, two resamples, S∗ and S

′∗,
are resampled from S and S′ using block bootstrapping. As
stated above, the block sizes are automatically selected based
on the data of S and S′. Second, the percentage difference
δ∗% between the performance results (mean or percentile)
of S∗ and S

′∗ is computed. Third, the above resampling
is performed 1000 times, providing 1000 differences, i.e.,
δ∗1%, δ

∗
2%, . . . , δ

∗
1000%. Fourth, the 1000 δ∗%s are sorted, and

the center cl% of the sorted list then gives the CI of δ% with
cl% confidence.

Let the CI of δ% be (L%, H%). In Step 3-3, Metior checks
if the conditions, −e% < L% and H% < e%, are true. If
both conditions are true, then the maximum possible difference
between the performance results of S and S′ is less than e%,
and the performance result of S is considered to be accurate
by Metior. Hence, the test can be stopped. Otherwise, the test
continues to Step 4 in Figure 6a.

C. Low-cost Test Execution in Metior

Because cloud performance fluctuates over time, we choose
to conduct the performance test in small intervals/periods of
executions rather than a specific number of executions. That
is, in Figure 6a, Metior executes the AUT for one day in Step

1 and 2. Moreover, our analysis on bootstrapping in Section II
shows that continuous executions usually have similar perfor-
mance. Therefore, there is no need to continuously execute the
AUT. Instead, the AUT can be executed intermittently while
still providing good coverage of performance fluctuations. As
cloud usage cost is charged in terms of seconds or minutes,
intermittently execution can reduce the number of executions
and the cloud usage expenditure.

Nevertheless, the interval length and intermittent frequency
must be carefully chosen to obtain accurate performance
results. Prior work employed a similar periodical and intermit-
tent execution strategy [13]. However, the prior work did not
provide a systematic approach to determine the interval length
and intermittent frequency. Here, we employed a data-driven
approach. To determine the interval length, we evaluated the
“optimal” block sizes for the performance tests data of ft and
IMA in Section II using the aforementioned automatic block
size selection technique. The largest block size we found was
24 hours of executions. Therefore, to ensure the execution
count in Step 2 is indeed significantly large, we set the interval
length to be one day so that Step 2 can provide at least one
new block of data. To determine the intermittent frequency,
we again used the performance test data from Section II to
determine how many executions can be discarded from the test
data without significantly reducing the autocorrelation (ACF).
We discovered that it needed at least four executions per hour
to maintain an ACF similar (less than 0.1 smaller) to the
original data. We used 0.1 as the threshold because less-than-
0.1 ACF is considered as no correlation [33].

In summary, based on the above analysis, in Step 1 and 2 of
Metior, we choose to execute the AUT intermittently 4 times
per hour and repeat hourly for one day.

IV. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation of
Metior, which answers the following two research questions:
1) What is the accuracy of the performance results obtained
Metior? 2) What is the cost of applying Metior?

A. Experiment Setup

Benchmarks and Clouds. For this evaluation, we used the
performance data sets from PT4Cloud [13]. PT4Cloud data
sets provide the performance data of executing six benchmarks
on two public clouds, AWS and Chameleon, continuously
for eight (8) weeks. Table II gives the details of these six
benchmarks, and Table III gives the types and counts of the six



TABLE II
BENCHMARKS USED IN THE EVALUATION.

Benchmark Domain Type of Perf. Origin
ft HPC execution time NPB [31]
ep HPC execution time NPB [31]
JPetStore (JPS) Web throughput J2EE [36]
YCSB DB throughput YCSB [37]
TPC-C DB throughput OLTPBench [38]
InMem Analy. (IMA) ML execution time CloudSuite [32]

TABLE III
VM CONFIGURATIONS FROM CHAMELEON (C) AND AWS (A) USED IN

THE EVALUATION.
Config. VM Cnt x VM Type Cores / VM Mem / VM

C-S 4 x Small 1 2GB
C-M 2 x Medium 2 4GB
C-L 1 x Large 4 8GB
A-S 4 x m5.large 2 8GB
A-M 2 x m5.xlarge 4 16GB
A-L 1 x m5.2xlarge 8 32GB

Virtual Machine (VM) configurations used in PT4Cloud. Each
benchmark was executed on all six VM configurations, except
for benchmarks ft, ep, and IMA, which could not be executed
on the small VMs of Chameleon (i.e., C-Sm in Table III) due
to inefficient memory. Here, a pair of benchmark and VM
configuration is called a benchmark configuration. In total, all
33 benchmark configurations from PT4Cloud were evaluated.

Evaluation Methodology. We partitioned the 8-week per-
formance data for each benchmark configuration into two
parts. The first part contained 3-week of data and was used
to conduct performance tests, whereas the rest 5-week data
were used as ground truth. The 3-week data have a large
number of performance data points, with each data point
contains the performance (execution time or throughput) of
one execution. From each data point, a performance test could
be conducted (simulated). For instance, starting from a data
point, a performance test with Metior can be simulated by
continuously reading in data points until Metior’s stop criterion
deems that the performance test can be stopped. After the
performance test is stopped, the data points read during the
test can then be used to calculate the performance results.
Because the 3-week data of each benchmark configuration
contain hundreds or thousands of data points, repeating the
simulated performance test starting from every data point led
to hundreds or thousands of simulated performance tests for
each benchmark configuration, allowing a thorough evaluation.

In this evaluation, the performance tests were used to obtain
performance results as the mean and 90%ile of the execution
time or throughput, reflecting the average and tail performance.
The maximum allowed errors (i.e., the e% in Figure 6) were
set to be 3%, 5%, and 10%. The confidence level (i.e., the
cl% in Figure 6) was chosen to be 95%.

Baselines. As stated above, the last 5-week data of each
benchmark configuration were used to obtain the ground truth
performance. For cloud performance testing, the ground truth
should be the performance results obtained from extremely
long performance tests that can truly cover all performance

fluctuations. Our current performance results showed that the
performance results from 4 (or more) weeks of executions
are usually stable enough to be used as ground truth. Besides
the ground truth, we also compared Metior with three state-
of-the-art cloud performance testing methodologies. The first
methodology, BasicBT, used the basic bootstrapping [12]. The
second methodology, CoV, uses the changes in the coefficient
of variation of the performance data as the stop criterion [20].
The third methodology is PT4Cloud [13].
Metrics. The percentage error of each performance result
obtain with Metior, PerfMetior, is calculated by comparing
it with the ground truth performance, Perftrue, using the
following equation,

err = |PerfMetior − Perftrue
Perftrue

| × 100%. (1)

Because large numbers of performance tests were conducted
using Metior for each benchmark configuration, we report the
percentage of tests that provided performance results with
less than the maximum allowed error. For example, if the
maximum allowed error is 3%, then we report the percentage
of the performance tests that indeed provided performance
results with less than 3% error. Moreover, recall that, in this
paper, we call a performance test result as accurate if it indeed
has an error less than the maximum allowed error.
Open Data. Our data and source code are available at
https://doi.org/10.5281/zenodo.5093934.

B. Accuracy Evaluation with 3% Maximum Allowed Error

1) Accuracy of Metior: Figure 7 gives the percentage of
the Metior performance tests that provided accurate mean
performance (i.e., with less than 3% error). As Figure 7 shows,
100% of Metior’s tests conducted on AWS provided mean
performance with less than 3% error. On Chameleon, except
for benchmark configurations of JPS-C-S and TPCC-C-M,
Metior ensured more than 90% of the tests were accurate for
all benchmark configurations. The benchmark performance on
Chameleon had larger fluctuations than AWS, making it more
difficult to obtain accurate results. Nonetheless, even for JPS-
C-S and TPCC-C-M, the tests could still provide performance
results with low error. For JPS-C-S, the largest error among
all the tests conducted for it was only 4.2%.2 For TPCC-C-
M, the largest error was 5.8%. Figure 9a gives the average
percentages of Metior’s tests for mean performance that were
accurate. Overall, 96% of the tests on Chameleon and 100%
of AWS tests had less than 3% errors. 98% of all tests on two
clouds had less than 3% errors.

Figure 8 gives the percentage of the Metior performance
tests that provided accurate 90%ile performance (i.e., with less
than 3% error). Again, 100% of Metior’s tests conducted on
AWS provided 90%ile performance with less than 3% errors.
On Chameleon, except for the configurations of YCSB-C-S

2Because hundreds or thousands of tests were conducted for each bench-
mark configuration, it is impossible to provide the error for each test in
Figure 7 and Figure 8. Due to space limitation, we also cannot provide the
max and average error for tests of each benchmark configuration.
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Fig. 7. Percentages of the tests that provided mean performance results with less-than-3% errors.

FT (C-L)

FT (C-M
)

EP (C-L)

EP (C-M
)

IM
A (C-L)

IM
A (C-M

)

JPS (C-L)

JPS (C-M
)

JPS (C-S)

TPCC (C-L)

TPCC (C-M
)

TPCC (C-S)

YCSB (C-L)

YCSB (C-S)

FT (A
-L)

FT (A
-M

)

FT (A
-S)

EP (A
-L)

EP (A
-M

)

EP (A
-S)

IM
A (A

-L)

IM
A (A

-M
)

IM
A (A

-S)

JPS (A
-L)

JPS (A
-M

)

JPS (A
-S)

TPCC (A
-L)

TPCC (A
-M

)

TPCC (A
-S)

YCSB (A
-L)

YCSB (A
-M

)

YCSB (A
-S)

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
(%

)

BasicBT CoV PT4Cloud Metior

Fig. 8. Percentages of the tests that provided 90%ile performance results with less-than-3% errors.
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(b) Tests for 90%ile performance.

Fig. 9. Summary of the percentages of the performance tests that were
accurate. Results are reported for three (3%, 5%, and 10%) maximum allowed
errors on AWS (A), Chameleon (C) and all tests (T).

and YCSB-C-L, Metior ensured more than 90% of the tests
were accurate for all benchmark configurations. Similar to the
mean performance, Metior’s performance results still had low
errors for YCSB-C-S and YCSB-C-L – the maximum errors of
the tests conducted for YCSB-C-S and YCSB-C-L were only
3.6% and 4.6%, respectively.2 Figure 9b gives the average
percentages of Metior’s tests for 90%ile performance that were
accurate. Overall, 96% of the Chameleon tests and 100% of
AWS tests had less than 3% errors. 98% of all tests on two
clouds had less than 3% errors.

Note that, for mean performance results, the tests for five
benchmark configurations could not stop with just 3-week of

data. For 90%ile performance results, the performance tests
for YCSB-C-M could not stop with 3-week of data. These
benchmark configurations are not shown in Figure 7 and
Figure 8, but are discussed in the next section.

2) Unstoppable Benchmark Configurations: For the mean
performance, for five benchmark configurations, IMA-C-M,
TPCC-C-S, YCSB-C-L, YCSB-C-M, and YCSB-C-S, Metior
deemed that all their performance tests should not stop (i.e.,
could not provide accurate results) with just 3-week data. For
the 90%ile performance, Metior deemed that all the tests of
YCBS-C-M should not stop with just 3-week data. Therefore,
the results of these benchmark configurations are not shown in
Figure 7 and Figure 8. Note that, as PT4Cloud only provided
8 weeks of performance data, it was also impossible for us
to continue the tests without running into ground truth data.
Therefore, we terminated the tests once all 3-week data were
used and report these tests as unstoppable.

For three benchmark configurations, IMA-C-M, TPCC-C-S,
and YCSB-C-M, 3-week data indeed could not provide mean
or 90%ile performance with less than 3% error. For YCSB-C-L
and YCSB-C-S, although 3-week data could provide accurate
performance results, their performance data had high varia-
tions. These high variations resulted in wide CIs for their mean
or 90%ile performance, making it impossible to conclude that
the performance results from 3-week data were accurate with
95% confidence. Therefore, we concluded that Metior indeed
should not stop the tests and behaved as expected for these
benchmark configurations. These unstoppable tests also reflect
the difficulty of conducting cloud performance testing under
large performance fluctuation and show the importance of
exploring reliable cloud performance testing methodologies.



3) Comparison with PT4Cloud: The percentages of the
accurate tests for PT4Cloud are also given in Figure 7 and
Figure 8. As the figures show, except for the above four
configurations, Metior had more accurate tests than PT4Cloud
for all other benchmark configurations. When testing for the
mean of IMA-C-L and 90%ile of TPCC-C-M, PT4Cloud was
slightly better than Metior with less than 5% more accurate
tests. When testing for the mean of TPCC-C-M and 90%ile
of YCSB-C-L, P4Cloud had 17% and 22% more accurate tests
than Metior. Nonetheless, when testing for the mean of TPCC-
C-M, the average and maximum errors of the tests conducted
by PT4Cloud and Metior were similar – the average errors
for PT4cloud and Metior were 1% and 2%, and the maximum
errors for PT4Cloud and Metior were 3.8% and 5.8%.2 For
the 90%ile tests of YCSB-C-L, the average errors of PT4cloud
and Metior were both 3%, whereas PT4Cloud maximum error
(8.6%) was higher than Metior (4.6%). Metior’s similar or
even better average or maximum errors show that although
Metior had fewer accurate tests for these two configurations,
the accuracy of individual tests of Metior was still similar to
those of PT4Cloud, and Metior’s tests also had errors very
close to the 3% maximum desired error. Moreover, Metior
was more accurate for all other benchmark configurations.

Figure 9 also gives the overall accuracy of PT4Cloud,
which shows that PT4Cloud’s overall accuracy was similar or
worse than Metior. Especially when testing for the 90%ile on
Chameleon with 3% max error, Metior has 17% more accurate
tests than PT4Cloud. PT4Cloud stopped the test with the
anticipation that the distribution (i.e., most of the percentiles)
had less than 3% error. However, it did not imply that the mean
or every percentile also had less than 3% error. Therefore, the
errors for some point estimates may still be larger than 3%,
causing P4Cloud to have lower accuracy than Metior.

Note that, for several benchmark configurations, PT4Cloud
could not stop the tests with 3-week of data (in addition to
those discussed in Section IV-B2). The PT4Cloud bars of these
configurations are omitted in Figures 7 and 8.

4) Comparison with BasicBT method: Figures 7 and 8
also show the percentages of tests that had less than 3%
errors for BasicBT [12]. As both figures show, BasicBT had
lower or similar accuracy than Metior for every benchmark
configuration. In several cases, BasicBT was significantly less
accurate than Metior, such as JPS-C-L and TPCC-C-L.

Figure 9 gives the overall accuracy of BasicBT. On AWS,
BasicBT had performed reasonably well with 97% of all
BasicBT’s tests had less than 3% errors. Nonetheless, it was
still lower than the 100% of Metior. Moreover, the large
performance fluctuation on Chameleon had made it particu-
larly difficult for BasicBT to stay accurate. On Chameleon,
78% of BasicBT’s tests for mean and 66% of BasicBT’s
tests for 90%ile had less than 3% errors, whereas 96% of
Metior’s tests on either mean or 90%ile were accurate. As
analyzed in Section II, BasicBT has two issues of incomplete
performance fluctuation coverage and not considering internal
data dependency, causing the relatively low accuracy.
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Fig. 10. The number of executions conducted by evaluated testing method-
ologies, normalized to Metior.

5) Comparison with the CoV method: Figures 7 and 8 also
show the percentages of tests that had less than 3% errors for
the CoV method [20]. Overall, CoV had the lowest accuracy
among the three cloud performance testing methodologies. On
AWS, 89% of CoV’s tests could provide accurate means or
90%iles. On Chameleon, 61% of CoV’s tests could provide
accurate means, and 45% of its tests could provide accurate
90%ile performance. The CoV method was not designed to
obtain accurate performance results with a maximum desired
error. Instead, it was designed to detect if the performance
results from microbenchmarks were stable enough. Hence,
because of having a different design goal, CoV’s accuracy
was lower than the other methodologies in this evaluation.

C. Testing Cost for 3% Max Allowed Errors

To obtain the mean performance, Metior conducted 290
executions per test on average. For the 90%ile performance,
Metior conducted 306.2 executions per test on average. These
executions roughly translate into three days of execution per
test. As we used existing data sets, we do not have the AWS
bills for these tests. Therefore, we estimated the testing cost
based on the test execution time and AWS’s cloud usage rates
(Chameleon is a free research cloud without charges). The
estimation shows that Metior’s cost for one test on AWS
ranged from $1.2 to $57.6, with an average cost of $17.6.

Figure 10 compares the average number of executions per
test required by the evaluated performance testing method-
ologies. As Figure 10 shows, the number of executions re-
quired by PT4Cloud was 3.1 times of those used by Metior
on average. This high number of executions was because
PT4Cloud was designed to obtain performance distributions.
When a whole distribution is deemed accurate (i.e., with less
than 3% error) by PT4Cloud, most of the percentiles of the
performance distribution had about 3% error, which required
many more tests than just obtaining one accurate mean or
percentile. Consequently, PT4Cloud incurs unnecessary costs
for performance tests that only need to obtain point estimates,
and its cost may be prohibitively high when a cloud application
has a large number of inputs that need to be tested. Note that,
Metior’s reduction in execution count does not only imply less
monetary cost, it also indicates a reduction in temporal cost,
and hence, a faster development/deployment cycle.

BasicBT and CoV required fewer executions than Metior,
as shown in Figure 10. Specifically, the average execution
counts per test for BasicBT were 20% to 27% of Metior’s
execution counts, and CoV’s execution counts were about 4%



of Metior. However, as BasicBT and CoV had lower accuracy
than Metior, these fewer executions did not indicate a cost
reduction, but indicated that BasicBT and CoV stopped their
tests too early before obtaining accurate performance results.

D. Sensitivity to Maximum Allowed Errors

We also evaluated Metior with 5% and 10% maximum
allowed errors. The evaluation results are summarized in
Figure 9. As Figure 9 shows, Metior’s retained its accuracy
when the maximum allowed errors were increased. On AWS,
100% of Metior’s tests were still accurate. On Chameleon,
more than 92% of Metior’s tests were accurate when the
maximum error was 5%, and more than 94% of Metior’s tests
were accurate when the maximum error was 10%.

The accuracy of PT4Cloud, BasicBT, and CoV was also
improved under 5% and 10% maximum errors. However,
PT4Cloud still had lower overall accuracy than Metior. More-
over, the numbers of executions per test of PT4Cloud were
still 3.2 and 3.6 times more than Metior for 5% than 10%
maximum errors. BasicBT still struggled on Chameleon and
had considerably lower accuracy than Metior even with larger
maximum errors. The accuracy of CoV was even lower than
BasicBT, as it is not designed to obtain performance with
specified maximum errors.

V. CASE STUDY AND APPLICATION OF Metior

A Case Study. To demonstrate the usefulness of Metior
to cloud researchers and practitioners, we applied Metior to
a cloud optimization technique, CherryPick [6], which selects
the best VM configuration for a cloud application by predicting
its performance on different VM configurations. CherryPick
employs Gaussian Process (GP) to make the prediction [39],
which requires a training data set which consists of the
performance of the application running in other VMs. Here,
we applied Metior to obtain accurate performance results as
the training sets to show that Metior can improve CherryPick’s
prediction accuracy.

More specifically, CherryPick was used to predict the per-
formance of the six benchmarks in Table II when they were
executing on the AWS 2×m5.xlarge configuration (i.e., A-
M). The training data sets were composed of performance
data points for five VM configurations, including 4×m5.large
(A-S), 1×m5.2xlarge (A-L), 1×m5.large, 2×m5.large and
1×m5.xlarge. The original CherryPick techniques asked for
6 data points for each VM configuration in the training set.
However, for the Metior-enhanced CherryPick, the data points
for each VM configuration must be many enough to provide
an accurate mean using the Metior methodology. That is,
Metior was used to obtain accurate mean performances for
each VM configuration, then the acquired mean performances
of each VM configuration were used as training data sets for
CherryPick to make predictions. New tests were conducted
for the VM configurations (i.e., 1×m5.large, 2×m5.large and
1×m5.xlarge) that are not included in the PT4Cloud data
sets. For a thorough evaluation, 10000 performance predictions
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Fig. 11. Average prediction errors for the original CherryPick and Metior-
enhanced CherryPick.

were made using the original and Metior-enhanced Cherryp-
ick. Then for each performance prediction, its percentage error
was computed by comparing the prediction with the ground
truth performance, which was the same five-week performance
used in the previous evaluation. The mean absolute percentage
errors (MAPE) are then reported in Figure 11. Note that, this
case study was only conducted on AWS, as Chameleon only
offered three VM configurations (CherryPick requires more
than 3 configurations).

As Figure 11 shows, Metior-enhanced CherryPick had
higher accuracy than the original CherryPick for every bench-
mark. On average, Metior-enhanced CherryPick’s prediction
error was 17.3% less than the original CherryPick. Moreover,
Metior-enhanced CherryPick had more stable predictions (i.e.,
less variation in prediction accuracy). The main benefit of
Metior is that it can provide more accurate training data
sets, which contained many more samples than the original
CherryPick. Note that, simply adding more training data do
not always increase CherryPick’s accuracy, because without a
reliable performance testing methodology, it is unclear how
many more training data should be added to ensure good
accuracy. The authors of CherryPick also noted that GP
was considered as just accurate enough to separate fast VM
configurations from slower ones. Nonetheless, a later study
showed that a GP model with better accuracy could improve
the accuracy of identifying better-performing VMs [40]. The
higher accuracy could improve CherryPick’s ability at VM
configuration optimization [40]. These results illustrate that, by
providing more reliable training sets and accurate performance
results, Metior is valuable for both cloud research and practice.

Application of Metior. The necessity of accurate cloud
performance results was documented by prior cloud perfor-
mance test studies [9, 12, 13, 20]. In cloud deployments,
a key step is to select the proper VM configuration that
meets the performance requirement [1, 6, 41]. The selection of
auto-scaling policies also requires determining a proper VM
configuration that meets the performance requirement as the
scaling target [5, 42, 43]. The most reliable way to determine
if a VM configuration meets a performance requirement is
performance testing. For cloud research, obtaining accurate
performance results is also the fundamental requirement. Ac-
curate performance results are required to evaluate new cloud
system/application designs [44] and develop new optimization
techniques (as shown with the case study).



VI. THREATS TO VALIDITY

Execution Environment Changes. Metior assumes that
the execution environments, including the cloud hardware
infrastructure and the statistical behavior of multi-tenancy,
remain unchanged during the performance test and after the
deployment. In our experience, the hardware infrastructure at
Chameleon and AWS remained unchanged for years, and the
multi-tenancy behaviors were also consistent within at least
year. Therefore, performance tests conducted with Metior with
only a few days or weeks of executions can accurately provide
the performance of cloud deployments within at least one
year. However, if the execution environment changes, new
performance tests should be conducted.

Nonetheless, the cloud execution environment does experi-
ence long-term (e.g., after multiple years) changes. Therefore,
new performance testing methodologies are required to tackle
this long-term performance change. We plan to redesign
Metior into cloud APIs to allow it to detect performance
variations caused by execution environment changes.

Other Cloud Applications, Test Inputs, and Cloud Ser-
vice providers. Although we strive to provide a comprehen-
sive evaluation, the exact accuracy of Metior may change with
the cloud applications, performance test inputs, and the cloud
service providers. Nonetheless, we expect Metior’s behavior
to be generally consistent over a variety of cloud applications,
inputs, and cloud services. Moreover, Metior is used to obtain
the accurate performance of a cloud application given one test
input. Metior does not aim at determining what test inputs
should be included in the performance tests.

VII. RELATED WORK

Cloud Performance Testing. Performance testing is a fun-
damental task in computer science [10, 11]. Jain documented
the methodology of using CI for performance measurement in
detail [19]. Maricq et al. recently improved this methodology
to cloud computing by employing the basic bootstrapping [12].
Wang et al. also employed basic bootstrapping in cloud
performance testing [9]. However, as shown in this paper,
the basic bootstrapping based testing methods had lower
accuracy partially due to overlooking internal data depen-
dency. PT4Cloud was a performance testing technique for
obtaining performance distributions of cloud applications [13].
Our work is inspired by PT4Cloud, especially in the use of
periodical and intermittent executions. However, PT4Cloud
determined the parameters of interval length and intermittent
frequency empirically, whereas Metior employed a systematic
approach to select these parameters. Moreover, as shown
in Section IV-B3, PT4Cloud had higher errors and higher
costs than Metior. Laaber et al. proposed a stop criterion for
executing microbenchmark in the cloud using the coefficient
of variation [20]. However, as shown in Section IV-B3, this
stop criteria had lower accuracy, as it was not designed to
obtain performance results with a maximum allowed error.
Alghmadi et al. proposed a stop condition for performance
testing by determining the repetitions in performance data [45].
As shown in prior work, this stop condition was not suitable

for testing performance in cloud computing [13]. Duet bench-
marking is a technique to compare the performance of two
cloud system designs or optimizations [44, 46]. While this
technique provides accurate comparisons, it was not designed
to determine the exact performance of a cloud application.

Other Related Work Cloud performance prediction models
were built to predict a cloud application’s performance on a
VM configuration or cloud service to aid cloud resource allo-
cation [1, 6, 40, 47]. These models used performance testing
results as their training data. Some studies also predicted and
estimated non-cloud software performance with models and
simulators [48–55]. As shown with our case study (Section V),
Metior can provide more accurate cloud performance results
as reliable training and testing data sets to facilitate the devel-
opment of performance modeling and simulation. There were
also studies on test inputs generation and prioritization for
performance testing [43, 56, 57, 57–70]. Several studies also
investigated performance change identification in configurable
systems [71, 72]. These studies are orthogonal to Metior, as
Metior focused on providing accurate performance results for
any test inputs and/or configurations.

VIII. CONCLUSION AND FUTURE WORK

This paper addressed the cloud performance testing prob-
lem. We first conducted an analysis to show that the basic
bootstrapping could not always provide accurate performance
results due to the overlooked internal dependency with cloud
performance data. We then present Metior, a reliable auto-
mated performance testing methodology using block boot-
strapping, which considers the internal dependency of cloud
performance data. To improve performance fluctuation cov-
erage and further reduce testing cost, Metior also employed
the “law of large numbers” and conducted tests periodically
and intermittently. Experiment results showed that Metior
ensured that more than 98% of tests had less than 3% error.
For future work, we will use Metior to test different types
of cloud services, more cloud service providers, as well as
additional types of applications. We also plan to implement
Metior as a serverless API so that it can easily used by
cloud practitioners for performance testing and for long term
performance fluctuation monitoring.
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[46] Lubomı́r Bulej, Vojtěch Horký, Petr Tuma, François Farquet,
and Aleksandar Prokopec. Duet Benchmarking: Improving
Measurement Accuracy in the Cloud. In ACM/SPEC Int’l Conf.
on Performance Engineering, ICPE ’20, 2020.
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