
CloudInsight: Utilizing a Council of Experts to
Predict Future Cloud Application Workloads

In Kee Kim
Computer Science

University of Virginia
ik2sb@virginia.edu

Wei Wang
Computer Science

University of Texas at San Antonio
wei.wang@utsa.edu

Yanjun Qi
Computer Science

University of Virginia
yanjun@virginia.edu

Marty Humphrey
Computer Science

University of Virginia
humphrey@cs.virginia.edu

Abstract—Many predictive approaches have been proposed
to overcome the limitations of reactive autoscaling on clouds.
These approaches leverage workload predictors that are usually
targeted for a particular workload pattern and can fail to handle
real-world cloud workloads whose patterns may be unknown a
priori, may dynamically change over time, or may be irregular.
The result is that resources are frequently under- and over-
provisioned. To address this problem, we create a novel cloud
workload prediction framework called CloudInsight, leveraging
the combined power of multiple workload predictors that col-
lectively provide a “council of experts”. The weights of the
predictors in this ensemble model are determined in real-time
based on their accuracy for current workload using multi-class
regression. Under real workload traces, CloudInsight has 13% –
27% better accuracy than state-of-the-art predictors. It also has
low overhead for predicting future workload changes (< 100 ms)
and creating a new ensemble workload predictor (< 1.1 sec.).

Index Terms—Cloud Computing; Workload Prediction, Predic-
tive Resource Management, Machine Learning, Ensemble Model

I. INTRODUCTION

Autoscaling is a common approach for attempting to achieve
elasticity in cloud applications [1–5]. However, autoscaling
can often be sub-optimal because of its reactive nature. The
reactive nature often results in over- and under-provisioning of
cloud resources that causes low cost efficiency and high SLA
(Service Level Agreement) violations. To overcome such lim-
itations, many predictive approaches have been proposed [6–
18]. The predictive approaches consist of two components;
one is a workload predictor, which forecasts future job arrival
time/rate; and the other is a resource management module,
which allocates/deallocates cloud resources and maps user
workloads to specific resources.

Existing predictive autoscaling managers often create and/or
use a single static workload predictor with the simplifying
assumption that their workload has a stable pattern (e.g.,
increasing, cyclic bursty, and on-and-off) over time. This
predictor model is typically built offline and can sometimes
require significant resources to build. Frequently, since cyclic
bursty is known as a typical workload pattern for cloud
applications [19], time-series based approaches are widely
used as the static workload predictor to handle cyclic work-
loads [6, 11–17, 20–24].

 0
 0.2
 0.4
 0.6
 0.8

 1

L-SVM AR ARMA Avg.

0.28 0.29 0.30
0.51

M
AP

E

(a) Increasing WL

 0
 0.2
 0.4
 0.6
 0.8

 1

G-SVM ARMA L-SVM Avg.

0.22 0.30
0.44

0.69

M
AP

E

(b) On and Off WL

 0
 0.2
 0.4
 0.6
 0.8

 1

ARIMA BDES L-SVM Avg.

0.38 0.41 0.43

0.75
M

AP
E

(c) Cyclic Bursty WL

 0
 0.2
 0.4
 0.6
 0.8

 1

G-SVM LR L-SVM Avg.

0.45 0.46 0.46 0.52

M
AP

E

(d) Random WL

Fig. 1. The accuracy results of workload predictors under four different
workload patterns. (L-SVM: Linear SVM, G-SVM: Gaussian SVM, BDES:
Brown Double Exponential Smoothing, LR: Linear Regression)

We first investigated the degree to which a single existing
predictor could be used across multiple typical cloud workload
patterns, by evaluating the prediction accuracy of 21 widely
used prediction algorithms: two naive, six regression, seven
time-series, and six machine-learning models. We used four
well-known/synthetic cloud workload patterns the commu-
nity [25, 26]: increasing workload, on and off workload, cyclic
bursty workload, and random workload. The performance of
all predictors is measured by MAPE. Figure 1 shows the
best three predictors and an average result from all predictors
regarding the four different workloads. There is no single best
workload predictor for all workload patterns – each workload
pattern has its own best workload predictor. Moreover, the
top three workload predictors for each workload pattern often
show similar performance for the workload prediction, imply-
ing that best predictors could be changing if the workload
contained more randomness or short-term burstiness [27]. It
is also worth noting that in Figure 1, the best predictors
usually contain non-time-series models, such as SVMs or
linear regression, because of the lack of trend and seasonality
in certain patterns.

Furthermore, the static approach is insufficient to address
real-world cloud workloads because the patterns of real work-

1

loads are usually unknown a priori. Consequently, a new
approach is required to improve the accuracy of workload
prediction for real-world workloads that have a variety of
workload patterns and dynamic fluctuations. To this end,
we have created the CloudInsight framework, inspired by a
“mixture-of-experts” problem [28]. Observing that different
predictors excel at predicting different workload patterns,
CloudInsight dynamically creates an ensemble model that
combines multiple predictors to predict future job arrival
rate/time. The weight of a predictor in the ensemble model is
based on the predictor’s accuracy for the current workload. To
determine the weights, we design a novel evaluation approach
based on a SVM (Support Vector Machine) multiclass regres-
sion model. The ensemble model is recreated periodically to
handle the dynamic fluctuations in a workload.

We have conducted comprehensive evaluations of the per-
formance (the prediction accuracy) of CloudInsight with di-
verse real-world workload traces collected from cluster [29,
30], HPC (High-Performance Computing) [31], and web ap-
plications [32]. The experiment results show that CloudInsight
outperforms existing time-series, machine learning, and spe-
cific custom predictors in all evaluated workloads. CloudIn-
sight has 13% to 27% better prediction accuracy than state-
of-the-art approaches. While performing high prediction accu-
racy, CloudInsight shows low overhead for predicting future
workload changes (< 100 ms) and (re)creating a new ensem-
ble model (< 1.1 sec.).

II. RELATED WORK

The models for existing predictive approaches commonly
rely on regression, time-series, and machine learning [33, 34].
Among them, time-series approaches are the most popular
approach. (ES [11, 20], AR [12, 21], ARMA [13, 14, 22],
ARIMA [15, 17, 23] and others [16, 24].) However, as
we stated in the introduction, such single predictor-based
approaches are not sufficient to address the dynamics and
burstiness of cloud workloads and can show poor performance
for unknown workload patterns.

Several custom predictive approaches are developed to
address dynamic cloud workload patterns. PRESS [10] and
CloudScale [7] employ a custom predictor that consolidates
FFT and Markov model. FFT is used to detect a signature
of workload patterns, and Markov model is to address a
short-term change of the workloads. However, in practice,
it is challenging for cloud users to determine the transition
probability of the Markov model correctly. Wood et al. [6]
developed a hybrid approach, combining robust linear stepwise
regression and the model refinement. This technique requires
an offline profiling for the initial linear model creation, but
CloudInsight is a purely online model that does not require
such offline profiling step.

Multi-predictor approaches are also proposed. e.g., Khan
et al. [35], Herbst et al. [36], and Liu et al. [37]. These
approaches employ a classification and clustering (e.g., de-
cision tree) of incoming workloads and statically allocate the
best predictor for the particular type of workloads to increase

CloudInsight Workload Predictor

Predictor Pool

Predictor #1

Predictor #2

. . .

Ensemble Model Builder

Creating Train/Test Dataset

Soft-Min Normalization

Predictor Evaluation

Ensemble Model Creation
Predictor #N

Workload

Repository

Resource Management Component (e.g. VM Scaling)

Update Local Prediction History

Ensemble

Model

Request for

Ensemble Model

Local

Predictions

Local

Pred.

History

Job

Arrival Workload Prediction

Job

Arrival

Update

Job Arrival

Info.

Workload

Fig. 2. Architecture of CloudInsight

the performance of workload prediction. However, for real
workloads without clear seasonality and trend, it is hard to
enumerate all possible classes a priori.

ASAP [38] and Vadara [39] are two ensemble approaches
with multiple workload predictors. These two approaches use
a simple assumption to determine contributions from each
individual predictor, i.e., recent the best predictors (e.g., the
lowest cumulative error during the previous monitoring inter-
val [18]) will perform the best for the near-future. However,
we observe that this assumption is not always true. Especially,
the workloads with short-term burstiness [27] can break this
assumption. Unlike these approaches, we utilize a much longer
history in CloudInsight, and employ multi-class regression
model to predict the future accuracy of local predictors.
Therefore, CloudInsight can provide more robust weights
and more accurate predictions. We will show CloudInsight’s
performance (prediction accuracy) in Section-IV.

III. CloudInsight FRAMEWORK

The CloudInsight framework (Figure 2) consists of four
main components: 1) a predictor pool, 2) a workload reposi-
tory, 3) a model builder and 4) CloudInsight workload predic-
tor. The input of this framework is the actual/current workloads
(e.g., job arrivals) and the output is the prediction for a near-
future workload. The predictor pool is a collection of workload
predictors. The workload repository stores the job history of
the workload and the prediction history of all local predictors
in predictor pool. The model builder is responsible for creating
an ensemble prediction model by evaluating the performance
of the predictors in the predictor pool.

When jobs begin to arrive in a cloud application, a predic-
tion for the future workload is also initiated. For the initial
period (e.g., the first 30 minutes or 1 hour), CloudInsight
either uses a simple ensemble workload prediction model that
all local predictors have the equal contribution (weight) or
relies on user’s selection of the weights (the user can allocate
a higher weight for a particular predictor). Once the initial
(measurement) step finishes and initial accuracy history is
collected, CloudInsight creates an ensemble prediction model
based on the procedure described below. This ensemble model

2

TABLE I
LOCAL PREDICTORS IN THE PREDICTOR POOL OF CloudInsight

Category Predictor Description

Regre-
ssion

Linear
Regress.

This regression model forecasts the next job arrival rate by creating a linear function [40] using local history of the
previous workload. In this work, the past job arrival rate is the only variable we consider, so this model is a single
variable linear model. This model is also a local regression because we only use the limited amount of past workl-
oad history. To select the local samples, this model applied kNN as a kernel function [41]. Linear regression is inc-
luded in the predictor pool because it can provide high accuracy for random workload pattern.

WMA
Weighted Moving Average is a weighted sum of observed dataset (e.g., past workload information), and the sum of
weight (ω) for each observed dataset is 1. WMA is calculated by

∑k
n=1 ωnxt+1−n, s.t.

∑k
n=1 ωn = 1. We add

this model since WMA shows good performance in overall.

Time
Series

BDES
Brown’s DES predicts the next job arrival rate by calculating (2 + α

1−α)s
′
t − (1 + α

1−α)s
′′
t . s

′
t is the first order

exponential smoothing model, and is expressed by s
′
t = αxt + (1− α)s

′′
t . xt is current job arrival rate, and α is

a smoothing factor (0 < α < 1). BDES performs well for cyclic bursty workload pattern.

AR
Autoregressive is a linear combination of previous data of the target object (e.g., job arrival rate). AR(p) model is
expressed in Xt = c+

∑p
i=1 ϕiXt−1 + εt, where p is the order of AR model, ϕi is the set of parameters of the

model, c is constant, and εt is white noise. AR can provide high accuracy for increasing workload.

ARMA

Autoregressive and Moving Average is a combined model of AR and MA (Moving Average), and ARMA(p, q) is
expressed in Xt =

∑p
i=1 ϕiXt−1 +

∑q
i=1 θiεt−i + c+ εt. The first term is AR(p) model with the order of p.

The second term is MA(q) model with the order of q. ARMA shows good performance for increasing and on/off
workload as well as provides high accuracy in overall.

ARIMA

Autoregressive Integrated Moving Average is a generalization of ARMA and provides a reliable prediction of non-
stationary time-series data by integrating AR and MA models. ARIMA is expressed as ARIMA(p, d, q), where p
is the order of AR, q is the order of MA, and d is the order of differencing model. ARIMA performs very well for
the cyclic bursty workload that has strong trend and seasonality.

Machine
Learning

Linear
and
Gaussian
SVMs

Support Vector Machine is an optimal margin-based classifier [40] that tries to find a small number of support vec-
tors (data points) that separate all data points of two classes with a hyperplane in a high-dimensional space. SVM
can be applied to the case of regression as well which contains all the main features that characterize the maximum
margin-based algorithm. At testing time, the (positive or negative) distance of a data point to the hyper-plane is out-
put as the prediction result for regression. We consider both Linear and Gaussian SVMs. Linear-SVM is to focus
on the workloads that have relatively clear trend factors, and Gaussian-SVM is to predict the workloads with non-
linear characteristics. Two SVM models work very well for both overall and specific workloads.

is used to predict future workload. After the expiration of the
model re-creation interval, the ensemble model will be re-
created. The workload prediction is performed at every pre-
defined prediction interval with the ensemble model, which is
created from the previous step. The ensemble model combines
the predictions from the local predictors in the predictor pool.
This prediction can then be used by a resource management
component for resource scaling.

A. Predictor Pool

The predictor pool contains a variety of workload predictors,
called “local predictors” – the predictor pool can contain any
predictors as long as those predictors can provide predictions
for future workloads (e.g., job arrival rates). We have ex-
perimented with various workload predictors, including time-
series, regressions, and machine-learning models. In this work,
CloudInsight leverages eight local predictors as described in
Table I. As shown later, CloudInsight can properly handle all
these types of predictors and considerably improve workload
prediction accuracy. Altough the “eight” local predictors are
selected for this work, users can add any workload predictors
to the predictor pool because of CloudInsight’s generality.
Note that, more local predictors may increase the overhead
of workload prediction and ensemble model creation.

B. Workload Repository

Workload repository contains the prediction history of the
all local predictors in the predictor pool. This history is

represented as a normalized performance vector, which is
described in the following paragraphs.
Performance Vector (PV): The PV is a fundamental element
of training and prediction input datasets for the evaluation step
and is a feature matrix composed of prediction errors of all
local predictors for past prediction history. The performance
vector is an n×m matrix as formulated below:

PV =


PE1,1 · · · PE1,m−1 PE1,m

PE2,1 · · · PE2,m−1 PE2,m

...
. . .

...
...

PEn−1,1 · · · PEn−1,m−1 PEn−1,m

PEn,1 · · · PEn,m−1 PEn,m

 (1)

where n is the number of the local predictors and m is the
past prediction points. PEi,j , an element of PV matrix, is
the prediction error of ith local predictor at jth prediction
point. PEi,j is measured by squared error ((Predictioni,j −
Actuali,j)

2). A single PV represents a set of prediction errors
of all n local predictors for past m prediction points. (In our
evaluation, CloudInsight uses 50 for m of PV .
Soft-Min Normalization: An issue of PV is that each ele-
ment (PE) of a PV matrix is the absolute squared error of
each local predictor at certain prediction point. Since a PE
represents the absolute prediction errors at a particular time
interval, two PEs from two different time intervals cannot be
directly compared to determine which is more accurate (i.e.,

3

t-1t-2t-3t-m-1t-m-2t-m-3t-m-lt-m-l-1

Training PVl

Length = m

Testing PV

Training PVl-1

Training PV2

Training PV1

l Vectors

for Training

Length = m

.

. . .

Time

Fig. 3. Temporal coverage of PV s for training and prediction input dataset.
(m: length of row for PV , meaning m temporal points for past predictions, l
is the size of training dataset, meaning the number of PVs in training dataset.

which has smaller error). Therefore, we normalize PEs so
that they can be directly compared. To normalize all PEs in a
PV , we use a soft-min normalization function that transforms
each element (PE) into a real number between 0 and 1. The
soft-min function is as shown below:

SoftMin(PEi,j) = 1− e−PEi,j∑n
k=1 e

−PEk,j
(2)

The input of Equation (2) is an element (PEi,j) of PV .
The numerator of the function is the exponentially inverse
transform of the PE that we want to normalize. The dominator
is the sum of exponentially inverse transforms for all PEs at
a particular prediction point (a single column in the PV .)

This normalized value is subtracted from 1 so that higher
values mean better performance (smaller prediction errors)
of the local predictors. The upper bound of the normalized
soft-min value is 1, while the lower bound is 0. A local
predictor always has a soft-min value between 0 and 1. After
this normalization, the sum of each column in a PV is 1.
Intuitively, the soft-min value for a local predictor at particular
prediction point can be viewed similarly as the probability of
it being the best predictor for this prediction point.

C. Ensemble Predictor Builder

The model builder evaluates the local predictors, determines
the best predictors among them, and creates an ensemble
prediction model of top predictors with different weights. This
model builder is inspired by a mixture-of-experts (MOE) prob-
lems [28]. Evaluating the local predictor is the most important
step of the model builder to create an ensemble prediction
model. We formulate this evaluation as a multiclass regression
problem and use Gaussian SVM regression model [40].
Training Dataset and Prediction Inputs: Both training
dataset and the prediction input dataset are represented as a
collection of PV s. However, these two datasets use separable
PV s that cover different temporal windows. Suppose time t in-
dicates current prediction point, l is the size of training dataset,
and m means the length of columns in PV s. The training
dataset covers the history of the local predictors’ performance
between at t − m − l − 1 and t − 2. The training dataset
is expressed as {PVt−m−l−1, PVt−m−l, ..., PVt−3, PVt−2}.
The prediction input data-set, which is used to predict the
job arrival rate at time t, is the PV at t− 1 prediction point

and is expressed as {PVt−1}. Figure 3 illustrates the temporal
coverage of training data set and prediction input data set.
Evaluation of Local Predictors: The “evaluating local pre-
dictors” problem is reduced to the “multiclass regression”
problem. A multiclass regression problem gives the probabil-
ities of whether an observation belongs to a set of categories.
Consequently, with a “multiclass regression” model, we can
evaluate the probability that a local predictor is the most
accurate predictor for the future workload. More specifically,
we employ Gaussian SVM model for this classification prob-
lem. The evaluation with the SVM model follows a typical
machine learning process; training and prediction. The SVM
model is trained with the aforementioned training dataset.
After training, this model provides its projection for all local
predictors. The output vector of this model is shown below.

Y T =
[
ω1, ω2, · · · , ωn−1, ωn

]
(3)

The output of this SVM model is a n × 1 matrix. Thanks
to the soft-min normalization, all items in this output matrix
are real numbers (ω) between 0 and 1. A higher value of ωi

(close to 1) indicates that ith predictor has higher possibility
to be the best predictor for workload prediction.
Creating an Ensemble Model for Workload Prediction:
The ensemble is constructed with Equation (4).

Ensemble Model:
∑n

i=1 ωipi∑n
i=1 ωi

(4)

where ωi is the output from the previous step and pi is the
prediction from a local predictor. The predictions of the local
predictors used in this ensemble model will be updated to the
workload repository to be used for further evaluation of the
local predictors. The ensemble model is re-created periodically
with a predefined time interval.

D. Implementation of CloudInsight

We implemented CloudInsight with Python 2.7 on Ubuntu
16.04 LTS. To implement the local predictors in the predictor
pool and the evaluation step of the model builder, the following
statistics and machine learning libraries are used; NumPy,
Statsmodels, Pandas, and scikit-learn.

For implementing the local predictors, while our goal is
to improve/maximize the prediction accuracy, deterministic
processing time of the local predictors is desirable. This
requirement is because CloudInsight collaborates with a re-
source manager that should adequately prepare cloud resources
before the actual job arrives. We use a grid search [42]
to determine the parameters for the local predictors with a
tradeoff between the accuracy and the prediction overhead.
We consider parameters of 0 < α < 1 for BDES, 1st to 3rd
order for other time-series models (AR, ARMA, ARIMA) and
10e−3 to 10e3 for soft margin and kernel parameters in SVMs.

For the implementation of the ensemble predictor builder
(the SVM multi-regression model), we aim more at improving
the performance of an ensemble model. To this end, we also

4

0

1K

2K

3K

4K

5K

0 200K 400K 600K

of

 J
ob

 R
eq

ue
st

s

Time (Second)

Google

100

200

300

400

500

0 20K 40K 60K 80K
Time (Second)

Facebook

(a) Cluster Workloads

0

0.3K

0.6K

0.9K

1.2K

1.5K

0 1 2 3

of

 U
se

r A
cc

es
se

s

Time (Day)

Wiki Global

 0
 50

 100
 150
 200
 250
 300
 350

0 1 2 3
Time (Day)

Wiki Japan

(b) Web Workloads

0

0.2K

0.4K

0.6K

0.8K

1.0K

1.2K

5 10 15 20

Jo

b
Re

qu
es

ts

Time (Day)

Grid 5000

0

1K

2K

3K

4K

5K

 8 16 24 32
Time (Day)

SHARCNet

(c) HPC Workload

Fig. 4. Example traces of cloud workloads used in this evaluation; (a) Cluster Workloads: Google cluster trace with 30 minutes of time-interval and Facebook
Hadoop trace with 5 minutes of time-interval (b) Web Workloads: Two Wikipedia traces with 5 minutes of time-interval (c) HPC Workloads: Grid 500 with
3600 seconds of time-interval and SHARCNet with 900 seconds of time-interval.

take the same approach (grid search) with the way of tuning
the local predictors, but we examine broader range for soft
margin and kernel parameters of SVM model 10e−6 to 10e6

to yield better results.
We use various synthetic workloads [25, 26] to guide the

above two parameter selection processes. To ensure fair eval-
uation and avoid over-fitting, we did not use real workloads
in parameter selection. Real workloads [29–32] are only used
to evaluate the performance of CloudInsight.

IV. PERFORMANCE EVALUATION

A. Evaluation Setup

Local Predictors: The predictor pool in CloudInsight has
eight well-known workload predictors; linear regression [37,
43], WMA [16, 24], BDES [11], AR [12, 21], ARMA [13,
14, 22], ARIMA [15, 17, 23], and two SVMs (both linear
and Gaussian models) [8]. These predictors are described in
Table I in Section-III.
Evaluation Goals: Our goal is to evaluate following properties
of CloudInsight. First, we measure the accuracy of CloudIn-
sight regarding the forecasting future job arrival rate in above
datasets. We then evaluate the overhead of CloudInsight since
prediction within deterministic time is a prerequisite of any
workload predictors.
Performance Metrics: To measure the prediction accuracy of
job arrive rate, we employ RMSE (Root Mean Square Error)1.
Lower RMSE means the better performance and vice versa.

To evaluate the overhead of CloudInsight, we define the
processing overhead as the time for “job arrival rate predic-
tion process” and “ensemble model recreation process.” We
measure the actual processing time on a Linux Server with 8
CPUs (AMD Opteron Processor 4386) and 16G RAM.
Baselines: We compare CloudInsight against four predictors;
ARIMA, SVM, FFT (Fast Fourier Transform), and RSLR
(Robust Stepwise Linear Regression). We choose ARIMA and
SVM from the local predictors because they are widely used
in many predictive approaches [8, 15, 17] as well as the
two best “static” predictors that we have experimented with.
We choose FFT [7, 10] and RSLR [6] from state-of-the-art

1RMSE =
√

1
n

∑n
i=1(Predictedi −Actuali)2

TABLE II
STATISTICS OF EVALUATED WORKLOADS

Worload Trace Duration # Jobs Predictor Setting

Predict.
Interval

Model
Recreat.
Interval

Cluster
[29, 30]

Google 1 mon. 2M

30 to
1200 sec.

At
every

5 Preds.

Facebook #1

1 day

5.9K
Facebook #2 6.6K
Facebook #3 24K
Facebook #4 25K

Web
[32, 44]

Wiki Glob.
3 days

823K 30 to
1200 sec.

At
every

5 Preds.
Wiki Germ. 76.5K
Wiki Japan. 51K

HPC
[31, 45]

Grid 5000 22 days 62.5K 30 to
1200 sec.

or
1 to 12 hr.

(AuverGrid)

At
every

5 Preds.

NorduGrid 60 days 122K
AuverGrid 365 days 2.3M
SHARCNet 11 days 188K

LCG 33 days 435K

approaches, which provide a robust and accurate prediction
for cloud resource scaling.

B. Workloads Used for Evaluation

To evaluation CloudInsight, we used three categories of
workload traces from real-world cloud applications: 1) Cluster
traces from Google [29] and Facebook [30]. 2) Wikipedia
web traces from WikiBench [32, 44], and 3) Scientific/HPC
workload traces from the Grid Workloads Archive [31, 45].
These three groups of workload datasets allow us to evaluate
CloudInsight with diverse scenarios of cloud applications.

While the workload datasets contain various characteristics,
this work focuses on its temporal characteristics. i.e., job
arrival rate. We extract temporal behaviors of job submissions
in the workloads. Example workload traces from three dif-
ferent application models are illustrated in Figure 4 and and
Table II describes the summary of the characteristics of the
workloads. We also choose workloads with variable length
of duration (lifetime) and density of job arrivals to show the
generality of CloudInsight. The following paragraphs outline
the backgrounds of such workloads.
Cluster Workloads: Example traces of cluster workloads are
shown in Figure 4(a). Google workload contains 2 millions
of job arrival data for a 1-month period. Facebook dataset
contains 1 millions of job submissions. Particularly for the

5

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Cloud
Insight

ARI
MA

SVM FFT RSLR

+13% +21% +19% +27%
N

or
m

. R
M

SE

(a) Cluster Workload

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Cloud
Insight

ARI
MA

SVM FFT RSLR

+12% +17% +12% +13%

N
or

m
. R

M
SE

(b) Web Workload

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Cloud
Insight

ARI
MA

SVM FFT RSLR

+15% +18% +18% +23%

N
or

m
. R

M
SE

(c) HPC Workload

Fig. 5. Normalized RMSE results in cluster workloads (1.00 means the result from CloudInsight and higher values indicate worse performance); (a) Normalized
RMSE of cluster workloads, (b) Normalized RMSE of web workloads, (c) Normalized RMSE of HPC workloads

Facebook workload, we use 4 sample traces from 2009 and
2010, each represents 1-day job submissions.
Web Workloads: We use three days of Wikipedia traces
in September 2007. We focus on access log for (global)
Wikipedia pages, German, and Japanese main page of
Wikipedia. The datasets have 823K (global), 76.5K (German),
and 51K (Japanese) of user accesses. Examples of Wikipedia
workloads are illustrated in Figure 4(b). Wikipedia workloads
generally show strong seasonality and trend characteristics, but
Japanese main page has an unexpected spike of user access.
HPC Workloads: Five workloads are used for HPC scenarios
on the clouds. i.e., Grid5000, NorduGrid, AuverGrid, SHAR-
CNet, and LCG (LHC Computing Grid). These workloads
respectively contain 62.5K jobs, 122K jobs, 2.3-million jobs,
188K jobs, and 435K jobs for various periods. Examples of
HPC workloads are illustrated in Figure 4(c). HPC workloads
have similar characteristics with two previous workloads, but
have more dynamic natures.

C. Prediction Accuracy of CloudInsight

To compare the accuracy of CloudInsight, with the base-
lines, we use various time interval for the workload prediction
as shown in Table II. This prediction interval may affect its
prediction accuracy because a longer prediction interval may
provide a smoothing effect on the workload patterns. Evalua-
tion with the various time interval minimizes this impact and
averaging them offsets the variation. In general, we use the
prediction intervals from 30 seconds to 1200 seconds with a
step of 30 seconds. Especially for AuverGrid with one year
period, we use the prediction intervals with a range from 3600
seconds (1 hour) to 86400 (24 hours) with a step of 3600
seconds. For the model re-creation interval, we recreate and
update the SVM model for evaluating the local predictors at
every five predictions of future workloads.

Figure 5(a) shows the RMSE results of job arrival rate
predictions of the five approaches with cluster workloads.
(all results are normalized to CloudInsight). On average,
CloudInsight is 13% – 27% more accurate than the four
baselines. Because the cluster workloads do not have a stable
seasonality and a trend, it is difficult for a single model
(ARIMA, SVM, FFT, or RSLR) to accurately detect certain
patterns from the cluster workloads to predict future changes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900

C
D

F

Absolute Error

CloudInsight
ARIMA

SVM
FFT

RSLR

(a) Google WL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150

C
D

F

Absolute Error

CloudInsight
ARIMA

SVM
FFT

RSLR

(b) Facebook #3 WL

Fig. 6. CDF of prediction errors in two cluster workloads

However, CloudInsight can keep adjusting the weights for each
predictor and create new ensemble model periodically to fit the
changes in the workload. Therefore, CloudInsight can show
better performance for workload prediction.

Figure 6 shows the CDF (Cumulative Distribution Function)
of prediction errors in two cluster workloads. Note that due to
page limitation, we only show the CDF results with Google
and Facebook #4 workloads. The x-axis represents absolute
prediction error, i.e., |Predictiont −Actualt|, while the y-
axis gives the cumulated probability of the errors. As shown
in the Figure, the curves for CloudInsight are skewed to the
left than the baselines, meaning the majority of CloudInsight’s
prediction errors are smaller than the baselines. Also, the
results from the baselines have longer tails, indicating they
yield more extreme prediction errors.

The averge RMSE results for web workloads are shown in
Figure 5(b) and CloudInsight outperforms the baselines again.
On average, CloudInsight has 12% – 17% of fewer errors
than the baselines. Because web workloads usually have strong
seasonality and trends, all baselines perform better than when
predicting cluster workloads. Especially, both FFT and LRSR
have a significant improvement in their accuracy. However,
although web workloads have relatively stable seasonality
and trends, the seasonality and trends can still change over
time, albeit less abruptly. Also, as shown in Wiki Japanese
workload, web workload could have a sudden spike of user
accesses. CloudInsight can identify the seasonality and trends
as well as detect the changes (or spikes) in them. Thus, it
can provide better prediction results. Figure 7 illustrates the
CDF of prediction errors in two web workloads (Wikipedia
global main page and Wikipedia Japanese page). Similarly, the

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 150 300 450

C
D

F

Absolute Error

CloudInsight
ARIMA

SVM
FFT

RSLR

(a) Wikipedia Global Main WL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25 50 75 100

C
D

F

Absolute Error

CloudInsight
ARIMA

SVM
FFT

RSLR

(b) Wikipedia Japanese WL

Fig. 7. CDF of prediction errors in two web workloads

majority of CloudInsight’s errors are still smaller than those
of the baselines.

Figure 5(c) shows the average (normalized) RMSE results
in the five HPC workloads; Grid 5000, NorduGrid, AuverGrid,
LCG, and SHARCnet. On average, CloudInsight is 19%
more accurate than the four baselines with all the five HPC
workloads. Our HPC workloads exhibit a broad range of
characteristics. The Grid 5000, AuverGrid, and SHARCNet
workloads are bursty and random. They also lack seasonality
and trends. The NorduGrid and LCG workloads have relatively
clearer seasonality (among HPC workloads), although it is
much more bursty and noisier than web workloads. The
measurement results with various HPC workloads indicate
that CloudInsight can correctly assign weights to the local
predictors based on current workloads behaviors so that it
can predict with the best predictors for the future workload.
Figure 8 shows the CDF distribution of the prediction errors
in the two HPC workloads. The results are similar with the
two previous cluster and web workload types. The curves
for CloudInsight are more skewed to the left, indicating that
CloudInsight has less errors than other baselines.

D. Overhead of CloudInsight

We evaluate the overhead of CloudInsight and the four
baselines. For the baselines, we only consider “prediction
overhead” for this evaluation as there is no additional overhead
due to the ensemble model reconstruction for them. We define
“prediction overhead” as the time that it takes to make predic-
tions at given time point. For CloudInsight, we measure both
“prediction overhead” and “modeling overhead.” We define
the modeling overhead as the time that CloudInsight takes to
create a new ensemble prediction model.

Prediction Overhead: On average (Table III), CloudInsight
takes 34ms to make a prediction, while other methods show
lower prediction overhead. i.e., ARIMA takes 26ms, RSLR
takes 21ms, FFT takes, 6.3ms and SVM takes 0.38ms. Al-
though SVM has the lowest overhead among the approaches,
it has less accuracy than CloudInsight and the others for
the majority of our workloads. Even though CloudInsight
leverages eight local predictors, it takes only 12ms more
time as compared to ARIMA. The reason is that these eight
predictors compute the prediction in parallel. The prediction
overhead of CloudInsight is determined by the highest pre-
diction time of its eight local predictors. It is worth noting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

C
D

F

Absolute Error

CloudInsight
ARIMA

SVM
FFT

RSLR

(a) Grid5000 WL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

Absolute Error

CloudInsight
ARIMA

SVM
FFT

RSLR

(b) AuverGrid WL

Fig. 8. CDF of prediction errors in two HPC workloads

TABLE III
PREDICTION OVERHEAD OF FIVE APPROACHES

Predictor Cluster WL Web WL HPC WL Avg.
CloudInsight 29 ms 37 ms 36 ms 34 ms

ARIMA 25 ms 24 ms 29 ms 26 ms
SVM 0.35 ms 0.4 ms 0.4 ms 0.4 ms
FFT 4.2 ms 5.9 ms 8.8 ms 6.3 ms

RSLR 22 ms 18 ms 22 ms 21 ms

that although CloudInsight has the longest prediction time
among five predictors, the absolute prediction time (34ms)
is still negligible compared to workload prediction intervals
and resource reconfiguration intervals. Because the overhead
from cloud infrastructure is usually higher than 30 seconds
(e.g., VM startup time), autoscaling resource managers often
reconfigure their resources at an interval higher than 30
seconds. As CloudInsight’s prediction time is much smaller
than the prediction interval, it imposes very limited impact to
an autoscaling resource manager.

Modeling Overhead: The results of this overhead are shown
in Figure 9. Limited by space, we only show the results from
the largest workload for each type of workloads: Google, Wiki
Global Main, and AuverGrid. This overhead for the other
workloads is usually smaller than these three workloads. In the
worst cases, it takes 0.8-1.1 seconds to create a new ensemble
model. The average modeling time is less than 155ms. This
overhead is still negligible in practice because CloudInsight
can create a new ensemble model and make predictions within
the autoscaling resource reconfiguration intervals as stated
previously.

V. CONCLUSION

This paper presents CloudInsight– an online workload pre-
diction framework to address dynamic and highly variable
cloud workloads. CloudInsight employs a number of local
predictors and creates an ensemble prediction model with them
by dynamically determining the proper weights of each local
predictor. To determine the weights, we formulate this problem
as a multi-class regression problem with a SVM classifier.
We have performed a comprehensive study to measure the
performance and overhead of this framework with a broad
range of real-world cloud workloads. Our evaluation results
show that CloudInsight has 13% – 27% of better accuracy than
state-of-the-art static predictors and it also has low overhead

7

 0
 200
 400
 600
 800

 1000
 1200
 1400

(Cluster)
Google

(Web)
Wiki Glob.

(HPC)
AuverGrid

1105

806
956

M
od

el
in

g
O

ve
rh

ea
d

(m
s)

(a) Max Overhead

 0

 50

 100

 150

 200

(Cluster)
Google

(Web)
Wiki Glob.

(HPC)
AuverGrid

155 150 147

M
od

el
in

g
O

ve
rh

ea
d

(m
s)

(b) Average Overhead

Fig. 9. Modeling overhead of CloudInsight

for predicting future workload changes (< 100 ms) and
(re)creating a new ensemble model (< 1.1 sec.).

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation under grant CCF-1617390. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied of NSF.

REFERENCES

[1] Luwei Cheng, Jia Rao, and Francis C.M. Lau. vScale: Automatic and
Efficient Processor Scaling for SMP Virtual Machines. In EuroSys ’16.

[2] Tayler H. Hetherington, Mike O’Connor, and Tor M. Aamodt. Mem-
cachedGPU: Scaling-up Scale-out Key-value Stores. In SoCC ’15.

[3] Bailu Ding, Lucja Kot, Alan Demers, and Johannes Gehrke. Centiman:
Elastic, High Performance Optimistic Concurrency Control by Water-
marking. In SoCC ’15.

[4] Thomas Heinze, Lars Roediger, Andreas Meister, Yuanzhen Ji, Zbigniew
Jerzak, and Christof Fetzer. Online Parameter Optimization for Elastic
Data Stream Processing. In SoCC ’15.

[5] Ganesh Ananthanarayanan, Christopher Douglas, Raghu Ramakrishnan,
Sriram Rao, and Ion Stoica. True Elasticity in Multi-Tenant Data-
Intensive Compute Clusters. In SoCC ’12.

[6] Timothy Wood, Ludmila Cherkasova, Kivanc M. Ozonat, and Prashant J.
Shenoy. Profiling and Modeling Resource Usage of Virtualized Appli-
cations. In Middleware ’08.

[7] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
CloudScale: Elastic Resource Scaling for Multi-Tenant Cloud Systems.
In SoCC ’11.

[8] Neeraja Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz. Wran-
gler: Predictable and Faster Jobs using Fewer Resources. In SoCC ’14.

[9] Daniel Jacobson, Danny Yuan, and Neeraj Joshi. Scryer: Netflix’s pre-
dictive auto scaling engine. The Netflix Tech Blog, 2013. http://techblog.
netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html.

[10] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS: PRedictive
Elastic ReSource Scaling for cloud systems. In CNSM ’10.

[11] Shuangcheng Niu, Jidong Zhai, Xiaosong Ma, Xiongchao Tang, and
Wenguang Chen. Cost-effective Cloud HPC Resource Provisioning by
Building Semi-Elastic Virtual Clusters. In SC ’13.

[12] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin
Xiao, and Feng Zhao. Energy-Aware Server Provisioning and Load
Dispatching for Connection-Intensive Internet Services. In NSDI ’08.

[13] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa
Uysal, Zhikui Wang, Sharad Singhal, and Arif Merchant. Automated
Control of Multiple Virtualized Resources. In Eurosys ’09.

[14] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient
Autoscaling in the Cloud using Predictive Models for Workload Fore-
casting. In CLOUD ’11.

[15] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar
Buyya. Workload Prediction Using ARIMA Model and Its Impact on
Cloud Applications’ QoS. IEEE Trans. on Cloud Computing, 4, 2015.

[16] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A.
Kozuch. AutoScale: Dynamic, Robust Capacity Management for Multi-
Tier Data Centers. ACM Trans. on Computer Systems, 30(4), 2012.

[17] Hong Xu Di Niu, Baochun Li, and Shuqiao Zhao. Quality-Assured
Cloud Bandwidth Auto-Scaling for Video-on-Demand Applications. In
IEEE International Conference on Computer Communications (INFO-
COM ’12), Orlando, FL, USA, June 2012.

[18] Hector Fernandez, Guillaume Pierre, and Thilo Kielmann. Autoscaling
Web Applications in Heterogeneous Cloud Infrastructures. In IC2E ’14.

[19] Ahmed Ali-Eldin, Ali Rezaie, Amardeep Mehta, Stanislav Razroev,
Sara Sjostedt de Luna, Oleg Seleznjev, Johan Tordsson, and Erik
Elmroth. How will your workload look like in 6 years? Analyzing
Wikimedia’s workload. In IC2E ’14.

[20] Eyal Zohar, Israel Cidon, and Osnat Mokryn. The Power of Prediction:
Cloud Bandwidth and Cost Reduction. In SIGCOMM ’11.

[21] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin
Yousif. Black-box and Gray-box Strategies for Virtual Machine Mi-
gration. In NSDI ’07.

[22] Wei Fang et al. RPPS: A Novel Resource Prediction and Provisioning
Scheme in Cloud Data Center. In SCC ’12.

[23] Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu, Raouf
Boutaba, and Joseph L. Hellerstein. Dynamic Energy-Aware Capacity
Provisioning for Cloud Computing Environments. In ICAC ’12.

[24] Yang Peng, Kai Chen, Guohui Wang, Wei Bai, Zhiqiang Ma, and Lin Gu.
HadoopWatch: A First Step Towards Comprehensive Traffic Forecasting
in Cloud Computing. In INFOCOM ’14.

[25] Workload patterns for cloud computing. http://watdenkt.veenhof.nu/
2010/07/13/workloadpatterns-for-cloudcomputing, 2018. ONLINE.

[26] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and
Peter Arbittera. Cloud Computing Patterns: Fundamentals to Design,
Build, and Manage Cloud Applications. 2014.

[27] Sadeka Islam, Srikumar Venugopal, and Anna Liu. Evaluating the
Impact of Fine-scale Burstiness on Cloud Elasticity. In SoCC ’15.

[28] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E.
Hinton. Adaptive Mixtures of Local Experts. Neural Computation,
3(1):79–87, 1991.

[29] John Wilkes. More Google cluster data. Google research, 2011. http:
//googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.

[30] SWIMProjectUCB. Workloads repository. https://github.com/
SWIMProjectUCB/SWIM/wiki/Workloads-repository, 2018. ONLINE.

[31] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Du-
mitrescu, Lex Wolters, and Dick H.J. Epema. The Grid Workloads
Archive. Future Generation Computer Systems, 24(7):672–686, 2008.

[32] Erik-Jan van Baaren. WikiBench: A Distributed, Wikipedia based Web
Application Benchmark. Master Thesis, VU Univ. Amsterdam, 2009.

[33] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical
Prediction models for Adaptive Resource Provisioning in the Cloud.
Future Generation Computer Systems, 28(1), 2012.

[34] Sheng Di, Derrick Kondo, and Walfredo Cirne. Host Load Prediction
in a Google Compute Cloud with a Bayesian Model. In SC’12.

[35] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload
Characterization and Prediction in the Cloud: A Multiple Time Series
Approach. In NOMS ’12.

[36] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich
Amrehn. Self-Adaptive Workload Classification and Forecasting for
Proactive Resource Provisioning. In ICPE ’13.

[37] Chunhong Liu, Chuanchang Liu, Yanlei Shang, Shiping Chen,
Bo Cheng, and Junliang Chen. An Adaptive Prediction Approach based
on Workload Pattern Discrimination in the Cloud. Journal of Network
and Computer Applications, 80, 2017.

[38] Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong N. Chang. ASAP:
A Self-Adaptive Prediction System for Instant Cloud Resource Demand
Provisioning. In ICDM ’11.

[39] Joao Loff and Joao Garcia. Vadara: Predictive Elasticity for Cloud
Applications. In CloudCom ’14.

[40] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Element
of Statistical Learning: Data Mining, Inference, and Prediction. 2011.

[41] In Kee Kim, Jacob Steele, Yanjun Qi, and Marty Humphrey. Comprehen-
sive Elastic Resource Management to Ensure Predictable Performance
for Scientific Applications on Public IaaS Clouds. In UCC ’14.

[42] James Bergstra, Remi Bardenet, Yoshua Bengio, and Balazs Kegl.
Algorithms for Hyper-Parameter Optimization. In NIPS ’11.

[43] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Zexiang Mao, and Junliang
Chen. Workload Predicting-Based Automatic Scaling in Service Clouds.
In CLOUD ’13.

[44] WikiBench. Wikipedia Traces. http://www.wikibench.eu, 2017. ONLINE.
[45] TU Delft. The Grid Workloads Archive. http://gwa.ewi.tudelft.nl, 2018.

8

