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ABSTRACT

A private cloud has become an essential computing infras-
tructure for many enterprises. However, according to a re-
cent study, 30% of VMs in data centers are not being used for
any productive work. These “inactive” (or “zombie”) VMs
can arise from faulty VM management code within the cloud
infrastructure but are usually the result of human neglect.
Inactive VMs can hurt the performance of productive VMs,
can distort internal cost management, and in the extreme
can result in the cloud infrastructure being unable to allo-
cate resources for new VMs. Correctly assessing the produc-
tivity of a VM can be challenging: e.g., is a VM that has
low CPU utilization being used to slowly edit source code
or is it an inactive VM that happens to be performing rou-
tine maintenance (e.g., virus-scan and software updates)?
To address this problem, we develop a supervised learning
model that leverages primitive information (e.g., running
process, login history, network connections) of VMs period-
ically collected by a lightweight data collection framework.
This model employs a linear support vector machine (SVM)
approach that reflects single VM behavior as well as coordi-
nated VM behaviors. We evaluated the identification accu-
racy of this model with a real-world dataset within IBM of
more than 750 VMs. Results show that our model has a 20%
higher accuracy (90%) than state-of-the-art approaches. An
accurate model is an important first step to enable private
cloud infrastructures to achieve better resource management
through such actions as suspending or dynamically downsiz-
ing inactive VMs.

CCS Concepts

eInformation systems — Data centers; eNetworks —
Cloud computing; Data center networks; eSoftware
and its engineering — Cloud computing;
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1. INTRODUCTION

Over the last decade, there has been a huge transition
from traditional in-house computing infrastructure to pri-
vate clouds [18]. Clearly, private clouds offer many bene-
fits as compared to traditional IT infrastructure. e.g., fine-
grained resource use via virtualization, pay-as-you-go pric-
ing model, simplified process to obtain and release VM (Vir-
tual Machine) instances [1].

However, one of the benefits — the simplified process to
obtain and release VMs — can also lead to problems. In
private clouds, VM execution is frequently either “free” or
of marginal “cost” (e.g., internal billing across departments
within an organization never directly makes it to individual
employees). As such, there can be little direct incentive for
judicial management of one’s running VMs, which of course
leads to VMs persisting that are of little value. According
to a recent study [14], more than 30% of VMs in enterprise
data centers are “comatose”, meaning that these VMs are not
being used for any productive work in their organizations.
These “inactive” (or “zombie”) VMs waste a huge amount of
capital investment for maintaining the infrastructures and
reduce available capacity of private clouds. Inactive VMs
can hurt the performance of productive VMs, can distort
internal cost management, and in the extreme can result in
the cloud infrastructure being unable to allocate resources
for new VMs.
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Figure 1: CDF of VM Utilization in an Enterprise
Data Center (measured with 200 VMs in total).

Intuitively, low resource utilization within the VM might
be sufficient to identify inactive VMs. However, Figure 1



shows the results from when we measured the CPU and
memory utilization of 200 VMs in an enterprise data center
for 5 business days. Figure 1 shows that most VMs have
low resource utilization. i.e., 80% of VMs use less than 10%
of CPU and 20% of memory resource. While it is certainly
possible that all of these VMs are inactive, our subsequent
ad hoc investigations on a per-VM basis indicate they are
not. Similarly, we have observed times where inactive VMs
look very active due to high resource consumption. e.g.,
automatic software updates and virus-scans can consume
high CPU and memory resources for a short period of time.

In this work, we create a supervised learning model that
accurately identifies active VMs in data centers. This model
leverages a range of primitive information of VMs — VM uti-
lization, running processes, login history, network connec-
tions, I/0 usage, and others — periodically collected by a
lightweight data collection framework. In a public cloud
setting, measurement mechanisms via such OS modifica-
tions would generally be prohibited because of privacy con-
cerns [11, 19, 2]. However, in this work, we leverage the na-
ture of the private cloud environment, in which such modifi-
cations are supported and generally considered to be in-line
with enterprise goals as a whole, to measure and collect such
information.

This model infers the purpose of a VM via its running
processes and subsequently selects the most important fea-
tures for the active-or-inactive classification according to the
purpose of VMs. Direct user feedback with random sam-
pling is used to find specific features that are highly cor-
related with identifying active/inactive VMs with different
purposes. This model employs a linear SVM (Support Vec-
tor Machine) for identifying active/inactive VMs with the
specific features. To minimize misclassification error, this
model also analyzes network dependencies among VMs and
adjusts identification results.

To evaluate the identification accuracy of our model, we
collect real-world data of more than 750 VMs in IBM data
centers and compare the identification accuracy with ground
truth from real VM users from the IBM research division.
The experiment results show that our model has a 20%
higher accuracy than other state-of-the-art approaches.

The contributions of this paper are:

e We have created a simplified data discovery and collec-
tion framework for active/inactive VM identification.

e We have collected user feedbacks associated with iden-
tifying active and inactive VMSs and used the feedbacks
to design a method for identification.

e We have created a model to accurately identify active
VDMs in private cloud data centers.

e We have validated the model with real-world large

scale dataset comparing with state-of-the-art approaches.

The rest of this paper is organized as follows: Section 2 de-
scribes design of the identification model in detail. Section 3
provides evaluation setup and results. Section 4 contains re-
lated work. Section 5 concludes this paper.

2. DESIGN OF IDENTIFICATION MODEL

This section describes two main parts of identifying ac-
tive/inactive VMs: 1) a lightweight data collection/discovery
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Figure 2: Active/Inactive VM Identification Frame-
work.

framework and 2) an identification model. The data collec-
tion framework periodically crawls usage information of tar-
get VMs and identification model determines active/inactive
VMs from the collected dataset. Figure 2 shows system ar-
chitecture that collects VM data and identifies them as ac-
tive or inactive.

2.1 Data Collection

We begin with design and implementation of the data col-
lection framework, which consists of agents and a collection
manager (the left side of Figure 2). The agents are running
on target VMs and execute a bash shell script in every pre-
defined time interval (e.g., in every four hours). The script
gathers primitive, but useful following information by using
basic commands supported by operating systems (e.g., ps,
netstat).

1. Host Information: host name and IP addresses of
target VMs, and timestamp for data collection.

2. Resource Usage: CPU, memory, and I/0 utilization
of target VMs.

3. Process Information: a list of all running processes,
and resource utilization of each process.

4. Network Connections: all open ports from pro-
cesses and established connections with external en-
tities.

5. Login History: login frequency/duration of users,
differentiated login frequency/duration for daytime and
nighttime.

The size of gathered data is less than 50 Kbytes for each
VM. The collected information is transferred to the data
collection manager using curl' and the data collection man-
ager stores the dataset used by our identification model. Al-
though, we rely on an IBM proprietary infrastructure man-
agement system in order to quickly implement and deploy
this framework to data centers, but this system can be sim-
ply replaced by other tools like chef? or puppet®. We deploy
this framework to multiple data centers after validating the
safety of this framework because it should not mess up such
production infrastructures.

"https://curl.haxx.se/
Zhttps://www.chef.io/
3https: //puppet.com/



2.2 Data Analysis

With the dataset, the next step is to find which factors
are highly correlated with activeness and inactiveness of
VMs. We choose dataset from the smallest data center with
70 VMs* and perform correlation analysis of various fac-
tors in order to find commonly correlated features with ac-
tive/inactive VMs. We ask actual users of these 70 VMs to
identify the VMs and use the user feedback as ground truth.
We consider a wide range of factors® from data set and cal-
culate Pearson correlation coefficient [22] of each factor with
equation-(1). If a factor’s coefficient is close to 1.0, the fac-
tor is highly correlated with a VM’s identification. However,
in this analysis, we cannot find any significant factors and
all factors have 0 < |p| < 0.5.

p= (X - X)(Y;—Y)
VEIL (X =X)L 0 - T

We discuss with the VM users with respect to this results
(no common correlations) and ask them actual reasons why
the VMs are inactive or active. With this discussion, we re-
alize that VMs with different purposes have different usage
pattern to determine inactive or active VMs. For example,
some VMs used for big-data analytics highly utilize CPU
and memory resources, whereas other VMs used for devel-
opment show low resource utilization but have very frequent
user access mostly at daytime. Also, many active VMs are
temporarily inactive, meaning that the users keep the VMs
for future use or many VMs contain long-lived and mostly
idle applications (e.g., mostly lightweight web application)
[23]. This observation means that leveraging such single
dimension information is not a sufficient approach to accu-
rately identify VM'’s activeness or inactiveness.

With this observation, we manually label purpose of each
VM and re-calculate correlation coefficient of the diverse fac-
tors. Table 1 shows correlation coefficient according to the
purpose of VMs. Due to page limitation, we only show corre-
lations for two use cases; analysis and development purpose.
As shown in Table 1, we can successfully find strong cor-
relations for identification. We extract specific correlated
features for five particular purposes of VMs with manual
labeling. These features will be used by our identification
model described in the next section. However, these features
are useful only if purposes of VMs are known. It is still chal-
lenging to properly determine the purpose of each VM. We
will discuss more about how to determine the purpose of
each VM in the next section.

2.3 Identification Model

We design a supervised learning-based identification model
with the data analysis results. This model uses the dataset
crawled by the data collection framework and determines
active and inactive VMs through the following four pipeline
steps (the right side of Figure 2):

(1)

4These VMs are excluded in our evaluation for model accuracy
in Section 3.

5We extract and use total 27 factors from collected dataset includ-
ing CPU/memory utilization of both VMs and significant pro-
cesses, logic frequency/duration, daytime/nighttime logins, con-
nections for significant process, external/local connections, etc.
5User development activity process is one of 25 classes for sig-
nificant user applications and includes editing (e.g., vi), compile-
related, and git-related activities.

Table 1: Example of Correlated Features based on

VM Purpose.
Purpose Factor P
CPU% of significant user procs. | 0.95
Analytics MEM% of VM. 0.90
# established connections. 0.97
# Logins > n times 0.85
Development Daytime logins hours> m hr. 0.91
# User dev. activity procs®. 0.88

1. Finding fingerprints for inactive VMs.

2. Determining purpose of target VMs.

3. Active VM classification with linear SVM.
4. Analyzing network dependencies of VMs.

This model identifies active VMs first and treats a com-
pliment set as inactive VMs. The reasons that this model
focuses more on finding active VMs are:

e Active VMs are highly likely to have more strong fea-
tures to determine them as active VMs.

e Population of active VMs is larger than population of
inactive VMs. Approximately 70% of VMs in data
centers can be considered as active VMs [14].

Due to these reasons, it makes more sense to us to concen-
trate on designing mechanisms to correctly identify active
VMs first. Moreover, we need to minimize false negative
errors’ since these errors have huge impact on both organi-
zations and the VM’s user. If data center operators suspend
or terminate this VM based on the identification result, the
actual owner of the VM could (temporarily) lose all data
and application configurations in the VM and this could be
a SLA (Service Level Agreement) violation case.

2.3.1 Finding Fingerprints for Inactive VMs

This step is to filter inactive VMs out from the dataset
using four simple, yet effective rules. If a VM satisfies these
four rules, it is considered as an inactive VM. The rules are:

Rule #1 — No reboot of a VM over last 6 months.
Rule #2 — No significant® processes on VMs.

Rule #3 — No login activities over last 3 months.

Rule #4 — No established connections with other ex-
ternal entities during data collection period.

If a VM satisfies these four rules, this implies that this VM
is highly likely inactive since it has no maintenance processes
(rule #1 — no reboot over last 6 months), very unclear pur-
poses (rule #2 — no interesting/significant processes), and
no activities from any external entities (rule #3 — no user
logins and rule #4 — no applications connections). With
these rules, our model excludes VMs from the identification
target.

2.3.2 Determining the Purpose of Target VMs

This step is to apply our important findings (Section 2.2)
for the identification process. The model determines the
purpose of each VM based on running processes. For ex-
ample, if RDBMS processes (e.g., PostgreSQL, MySQL) are

"False negative case is “active VMs are identified as inactive.”
8We define 25 classes of significant user applications and ignore
kernel or OS related processes.



Table 2: Specific Features According to Purpose of VMs used by Active VM Classification.

Purpose of VM | List of Specific Features

Analytics %CPU/%MEM of VM, %CPU of significant user procs, # of open ports, # of established conns.
DevOps # of significant user procs, %CPU/%MEM of significant user procs, # of established conns.
Development # of logins, average login hours (daytime), # of ssh/VNC conns. # user dev. activity procs.
Storage/Backup | # of storage/backup procs, I/O usage, %MEM of significant user procs, # of established conns.
Others # of user maintenance activity procs, # of daytime logins.

running on a VM, this VM is supposed to be mainly used for
storage purpose. Similarly, if hadoop processes are running
on a VM, this VM is highly likely to be used for analytics
purpose. However, this insight does not necessarily work for
all cases. RDBMS is mainly used to store structured data,
but it does not always mean that this VM is only used for
storage-purpose. In many cases, RDBMS can be part of an
application configuration (e.g., LAMP?) for development-
purpose or test-purpose VMs.

To properly decide possible purposes of VMs, we leverage
user feedbacks for 70 VMs (used for data analysis in Sec-
tion 2.2) and decide weights for purposes associated with
running processes. We then create a function that maps
type of running processes to possible purposes. This func-
tion returns multiple purposes with different weights. (e.g.,
input: process; — output: {purpose; : w1, purposes :
Wa, ..., purpose, : wn}). The weights associated with dif-
ferent purposes of VMs are directly used by linear SVM
classifier in the next step.

2.3.3 Active VM Classification with Linear SVM

The identification model employs a supervised learning
model called a linear SVM in order to classify active VMs.
SVM is a widely used classifier to solve diverse research
problems in cloud computing area (e.g., workload predic-
tion/classification [13, 5], application performance modeling
[15], and anomaly detection [10]). Linear SVM is an optimal
margin-based classifier with linear kernel and tries to find a
small number of data points that separate all data points of
two classes with a hyperplane [9].

A key insight using this supervised learning approach is
that the linear SVM is dynamically leveraging different cor-
relation features for the identification according to the pur-
poses of target VMs. Table 2 describes specific correlated
features, with respect to possible purposes of target VMs,
dynamically used by SVM classifier. As shown in Table 2,
both “analytics”- and “devops'®”-purpose mostly use VM
utilization-related features, “development”- purpose selects
user access and development related processes (e.g., git'') as
features, and “backup/storage’-purpose focuses on particu-
lar utilization features associated with storage/backup oper-
ations (e.g., I/O, memory) for SVM classification. “Others”-
purpose is the most challenging case in this classification
process because most of these VMs do not have any interest-
ing features in running processes or utilization. So the SVM
classifier can use only two features; daytime login frequency
and maintenance-related features (e.g., yum, apt-get).

Moreover, VMs can be used for multiple purposes, so the
identification model runs the SVM classifier multiple times
with different weights. The VMs then are classified as ac-
tive or inactive with equation-(2) where w is a weight for a

9Linux7 Apache Web Server, MySQL, and PHP
100 clipped compound of development and operation [21].
"https://git-scm.com/

particular purpose for the classification and 1 is the classi-
fication results with the particular purpose (¢ € {0,1}).

=1 "

2.3.4 Analyzing Network Dependencies of VMs

The last step of the identification model is to analyze net-
work dependencies of all VMs and validate the classification
result with the network dependencies. This step is designed
to minimize false negative errors with network affinity anal-
ysis [12, 4, 17], which is a well-known approach for enterprise
application migration to cloud data centers. The identifica-
tion model investigates all external connections of VMs that
are classified as inactive. This model adjusts the VM’s clas-
sification result from inactive to active if there is a network
dependency with active VMs. This step is particularly use-
ful for VMs with cluster configurations (e.g., hadoop'? or
mesos'?). Usually, a master VM of such clusters has strong
features to be properly classified as active or inactive VM,
but slave VMs have weak features for the identification pro-
cess. Thus, network affinity analysis propagates confidence
determined from a master VM to slave ones. In the eval-
uation section, we will assess performance of the network
affinity analysis on how much it can contribute to accuracy
improvement for our identification model.

Classification Result =

3. MODEL EVALUATION
3.1 Evaluation Setup

We describe experiment setup to evaluate our identifica-
tion model.

Dataset: We deploy the lightweight data collection frame-
work to multiple data centers for IBM private cloud infras-
tructure and collect primitive data — utilization, process, lo-
gin history, network connections, etc. — from 750 VMs'* in
every four hours. Total data collection period is four weeks.
To obtain ground truth for dataset, we create a survey sys-
tem and ask actual users to identify that their VMs are
active or inactive.

Evaluation Metrics: We evaluate accuracy of our identifi-
cation model in isolation and measure the impact of network
affinity analysis on improving the accuracy of our model. We
then compare the accuracy of the identification model with
two state-of-the-art approaches. For both evaluations, we
validate the accuracy with k-fold cross validation [9].

Accuracy Metrics: We use three accuracy metrics; recall,

precision, and f-measure [9]. Recall (TPTJr%) is more sen-

.. . .. TP .
smv.e .to false negatn./e. errors and precision TP+Fp IS more
sensitive to false positive errors. F-measure is calculated by

2http://hadoop.apache.org/
13http://mesos.apache.org/
"The total number of owners for the 750 VMs is about 200.
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Figure 3: Accuracy of Our Identification Model.

Table 3: Impact of Network Affinity Analysis
(NAA).
Metric Recall | Precision | F-Measure
Without NAA 0.83 0.78 0.82
With NAA 0.90 0.81 0.85
Improvement 7% 3% 3%

2xRecallxPrecision g1 jg 5 harmonic mean of recall and pre-
Recall+Precision

cision. (TP: True Positive, TN: True Negative, FP: False
Positive, and FN: False Negative.)

False negative errors in this evaluation is a situation where
an active VMs are not correctly identified as active. These
false negative errors are seriously concerned by this work
since these type-1I errors (false negatives) have huge impact
on both enterprise and VM users, so among these three accu-
racy metrics, recall is the most important for this evaluation.

Baselines: We use two state-of-the-art approaches as base-
lines; Pleco [20] and Garbo [6]. Pleco identifies active and
inactive VMs with a combination of a reference model and
decision tree classification. Garbo is a graph-based VM
cleaning-up tool for Amazon Web Services'®. Garbo cre-
ates a directly acyclic graph from core nodes and performs

mark and swap operation to clean up inactive VMs.

3.2 VM Identification Accuracy

We evaluate accuracy of our identification model in isola-
tion and use dataset/ground truth of 750 VMs. The results
are shown in Figure 3. Our model can identify active VMs
with 0.90 of recall, 0.81 of precision, and 0.85 of f-measure.
In this evaluation, the model identifies 472 (63%) of active
VMs and 278 (37%) of inactive VMs. Especially for the re-
call, this model has 47 false negative errors. The inactive
VM rate (37%) is slightly higher than the observation result
(30%) from the recent study [14]. This might be because we
collect VM data from private clouds for research and devel-
opment division and characteristics of VMs could be little
different from production clouds.

To evaluate the impact from network affinity analysis (Sec-
tion 2.3.4), we measure the accuracy of our model with and
without the network affinity analysis step. The evaluation
results are shown in Table 3. Network affinity analysis can
improve accuracy of our model with 3% — 7% and has more
impact on increasing recall (7%). In order to understand
this impact, we measure the number of external connections
from all 750 VMs. We found that active VMs have aver-
age of 2.3 external connections (o0 = 4.1) and inactive ones
are connected with 0.5 of external connections in average
(o = 0.9). This observation indicates that active VMs are
highly likely to have connections with other active VMs.

B https:/ /aws.amazon.com/

Table 4: Comparison of Technical Differences.

Approach Details

Primitive Information (e.g., utilization,
running processes, login history, etc.)
+ SVM Classifier + Network Affinity Analysis.

Our Model

Pleco Reference Model + Decision Tree Classifier.

Garbo Graph-based Dependency Discovery.

3.3 Comparison with Baselines

The next evaluation step is to compare the accuracy of
our identification model with two baselines. For accuracy
comparison, we measure recall, precision, and f-measure of
three approaches. Figure 4 illustrates evaluation results of
three metrics for all approaches. In all metrics, our identifi-
cation model shows higher accuracy (11% — 20%) than the
results from two baselines. Pleco and Garbo only have 0.75
and 0.70 of recall, but our model shows 0.90. To understand
these results, we need to see the technical differences in the
three approaches.

Table 4 summarizes technical differences of main mecha-
nisms in three approaches. Two baselines — Pleco [20] and
Garbo [6] — are a graph-based approach, indicating that con-
nectivity information of among cloud resources (e.g., VM) is
the most critical to identify active and inactive resources. As
we confirmed in Section 3.2. connectivity (or affinity) infor-
mation could be a key to determine active/inactive VMs, but
other information (e.g., login, utilization) is also very criti-
cal. For example, in many cases, VMs performs significant
processing without any external connections. In our mea-
surement, 30% of active VM (142 VMs out of 472 VMs) have
no connections with external entities. These (stand-alone)
VMs can be very challenging use cases for the graph-based
approach to correctly identify them as active or inactive re-
sources. Since VMs are created and used for different pur-
poses, identification models should cautiously select proper
features from multiple dimensions of information including
network connectivity /dependency, utilization, login history,
and others.

Moreover, the graph-based approaches should properly
define starting nodes and discovery scope since VMs can
be connected to/from a number of external entities located
inside or outside of the target data centers. If too small or
too large number of starting nodes are selected, it can easily
hurt accuracy of approach or have high computational over-
head. Thus, defining proper discovery size/staring nodes is
very challenging to maximize accuracy and minimize over-
head of the graph-based approaches.

4. RELATED WORK

There are two approaches for the infrastructure garbage
collection with active/inactive VM identification: graph-
based [20, 6] and rule-based [16, 7, 3]. The graph-based
approach leverages a network affinity model that references
connectivity between VMs, and propagates importance of
VMs to connected ones. The rule-based approach makes
use of pre-defined rules (or annotations) to identify any VMs
that violate the rules.

Graph-based approach: Pleco [20] is a tool to detect in-
active VMs in IaaS clouds. Similar to memory garbage col-
lector which identifies garbage objects by examining object
references, Pleco constructs a VM reference model according
to a dependency of applications (network affinity model), as-



0.8
0.6
0.4
h 0.2

o
oo
!

.
e
i
Ty
2k
K,
9%
<]

)

22

%

s
%

%%

X

:

S
s
3
K
>

3

.
2
-
Z
=
2

55

-
o%
%
ol

R
<
<

F-Measure

5o
5%
5
X
20

9%
i"

X
%2

XL
%

X

55
2

s
£5%%8
oo
%
>
S
S

.
Z
-
=
2
5

2eS

X

,.
%
38
o
-
X
%
tolete
193%
XXX
S
o%
XX

ot
203
55

%5

o

&
5
3
S
R
35
S
53
XX

5
33
%

26%%3
XX
0%l
%
XXX
X
XXX
%
2020
X
%

K3
?
b2
o2

3
2
X

%2
XL,

KX
2
5
%

-

T T
1+ E 1+
XXX
08 E5 ; . c 08
_ R
T oosl B % ] - 2 o6
iz <] s s o
04 ke 23] st M o 04f
s g B
E 3354 (355
021 F s s I 02
8 ] R
e ] 0
Our-Model Pleco Our-Model

(a) Recall

Pleco

(b) Precision

Our-Model Pleco Garbo
(c) F-Measure

Figure 4: Accuracy Results of Three Approaches: Our Identification Model, Pleco, and Garbo.

signs weight to each reference, and calculates a confidence
level for identified inactive VMs. Since only affinity infor-
mation is used, the recall of this approach is low (75%).

Garbo [6] generates a directed graph with connectivity
(dependency) of resources and adopts an idea from garbage
collection mechanism. However, in many cases, stand-alone
cloud resources, having no dependency with other cloud re-
sources, cannot necessarily be identified as unused resources
by only using resource dependencies. For example, stand-
alone cloud resources often have very important dataset for
an organization (e.g., key files) and many “development-and-
test” VM instances oftentimes contain all tier components
(e.g., LAMP) for services and they might not have any con-
nection with other cloud resources.

Rule-based approach: Janitor Monkey [16] identifies
unused resources based on a set of rules defined by oper-
ators. This set of rule is focused on the “age factor” of
resources. For instance, Janitor Monkey marks resources
inactive if they are not used for more than 3 days. Since
operators cannot predict when the resources will be used,
defining proper rules is a challenging task for the operators
of cloud infrastructure management. As Janitor Monkey
does not consider any connectivity (or dependency) among
resources as well as the significance of the target resources,
it cannot adapt to any dynamic scenarios.

Poncho [7] is used to maintain Magellan cloud'® at Ar-
gonne (open-stack based). The core idea is to use anno-
tation and notification. Resource owners are required to
provide detailed annotations (their own rules) for their re-
sources. The rules are not meant for global uses, but defined
for specific workloads. The examples of annotations include
reboot_when, terminate_when, or snapshot_on_terminate.
terminate_when means that the VM can be terminated af-
ter X hour execution, and this implicitly offers VM to be
used for another job. With pre-defined annotations by re-
source owners, inactive time of cloud resources can be min-
imized as well as resource utilization of the entire infras-
tructure can be improved, but each time users create VMs,
they have to annotate VMs and the annotations need to be
changed when the purpose of VMs is changed.

CloudVMI [3] offers VMI (commonly supported by Hy-
pervisor) capability to public cloud users. This CloudVMI
has a “garbage collection” functionality, which destroys VMs
based on their access history. CloudVMI periodically checks
“access history” of VMs since they were last used. If VM in-
stances have not been accessed for a specific time, the VMs
are destroyed by the garbage collector. This CloudVMI only
considers the access history, but does not leverage resource
utilization, significance, or dependency (connectivity).

http: / /www.alcf.anl.gov/magellan

The graph-based and rule-based approaches are limited
to achieve efficient active/inactive VM identification. To
improve the accuracy and dynamicity, our approach designs
a model that considers more aspects of systems such as sig-
nificance (role) and utilization of target resources as well as
connectivity among resources in our discovery scope.

S. CONCLUSION AND FUTURE WORK

We have described a supervised learning model to accu-
rately identify active and inactive VMs for an enterprise pri-
vate cloud. In order to improve the accuracy, we propose
an identification model with four steps. The identification
model finds fingerprints for inactive VMs first, then deter-
mines the purpose of each VM. By leveraging the supervised
learning technique (SVM), we identify active VMs with cor-
responding features to the purpose. Finally, we validate the
identification is correct using a network affinity model, and
propagate importance to connected VMs. We have demon-
strated how we increase the recall of the model. Our evalu-
ation with 750 VMs from enterprise data centers shows the
accuracy is 90%, and this is 15% — 20% higher than existing
methods. We are closely looking at how we remove the false
negatives which can have significant impact on recommen-
dations to VM users. With the identification results, the
current recommendation to VM users is straightforward. If
users’ VMs are identified as inactive, they are required to
take proper actions with our recommendations. i.e., termi-
nating VMs with snapshot, resizing VMs.

This accurate identification model is an important first
step to enable private cloud to achieve better resource man-
agement. In the near future, based on this model, we will in-
vestigate a novel scheduling mechanism with over-provisioning
for private cloud data centers that will automatically iden-
tify inactive VMs and switch them with new or active VMs.
This approach will focus on improving data centers’ utiliza-
tion and capacity without SLA violations.

In this work, we have seriously concerned protecting VM
users’ privacy since some information we crawl might violate
VM users’ privacy. Although we assume that there is no per-
sonal data in enterprise private cloud, data collection mech-
anism must carefully gather the minimal amount of data for
identification and strictly follow data protection regulations
such as EU’s the general data protection regulations [8].
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