
iCSI: A Cloud Garbage VM Collector for Addressing
Inactive VMs with Machine Learning

In Kee Kim∗, Sai Zeng†, Christopher Young†, Jinho Hwang†, and Marty Humphrey∗
∗University of Virginia, Department of Computer Science, ik2sb@virginia.edu, humphrey@cs.virginia.edu

†IBM T.J. Watson Research Center, {saizeng, ccyoung, jinho}@us.ibm.com

Abstract—According to a recent study, 30% of VMs in private
cloud data centers are “comatose”, in part because there is
generally no strong incentive for their human owners to delete
them at an appropriate time. These inactive VMs are still
scheduled and executed on physical cloud resources, taking
valuable access away from productive VMs. In an extreme,
cloud infrastructure may deny legitimate requests for new VMs
because capacity limits have been hit. It is not sufficient for
cloud infrastructure to identify such inactive VMs by monitoring
resource utilization (e.g., CPU utilization) – e.g., management
processes (e.g. virus-scan, software update) on inactive VMs often
consume high CPU and memory resources, and active VMs with
lightweight jobs (e.g. text editing) show almost zero resource
utilization. To properly detect and address such inactive VMs, we
present iCSI: a cloud garbage VM collector to improve resource
utilization and cost efficiency of enterprise data centers. iCSI
includes three main components; a lightweight data collector, a
VM identification model and a recommendation engine. The data
collector periodically gathers primitive information from VMs.
The identification model infers the purpose of a VM from the
data collection and extracts the most relevant features associated
with the purpose. The recommendation engine offers proper
actions to end users i.e., suspending or resizing VMs. In this
prototype phase, iCSI is deployed into multiple data centers in
IBM and manages more than 750 production VMs. iCSI achieves
20% better accuracy (90%) in identifying active/inactive VMs
compared with state-of-the-art methods. With recommendations
to end users, our estimation results show that iCSI can improve
internal cost efficiency with 23% and resource utilization more
than 45%.

Index Terms—Cloud Computing; IaaS Garbage VM Col-
lection; Identifying Inactive VM; Data Center Management;
Support Vector Machine

I. INTRODUCTION

Private clouds have been widely adopted for many enterprise
companies and are becoming essential for servicing both
internal1 and external2 IT activities [1, 2]. Clearly, cloud
computing offers many benefits as compared to traditional
in-house computing infrastructure. These benefits include ef-
ficient resource management via virtualization [3, 4], pay-as-
you-go model [5], and simplified process to obtain and release
VM (Virtual Machine) instances [6].

However, surprisingly, such infrastructures are not effec-
tively utilized based on a recent study [7]. The study shows
that approximately 30% of VMs in the U.S. data centers are
“comatose”. These inactive (or “zombie”) VMs most likely

1Internal activities include “research” and “development” activities in an
organization.

2External activities indicate “production service” to end users.

were used at some point in the past but have not been
suspended, been snapshot, or been terminated for a variety
of reasons. For example, in the public cloud, users tend to
more directly see and understand the financial ramifications of
continuing to run VMs past their useful stage; in a company’s
private cloud, such financial ramifications might not be as
directly felt by the employee. The inactive VMs dramatically
reduce available resource capacity, hurt internal cost efficiency,
and show poor utilization of such infrastructure. In an extreme
case, these VMs may result in cloud infrastructure being
unable to allocate resources for new VMs.

“Cloud garbage VM collection” [8–11] is a mechanism to
detect inactive VMs and properly manage them to improve
utilization and cost efficiency of private cloud infrastructure.
Identification of these inactive VMs is the first step to design
a cloud garbage VM collector. Intuitively, resource monitor-
ing [12, 13] might be attractive to identify these inactive VMs
but unfortunately this approach does not always work for
many real-world use cases. For example, inactive VMs often
appear active since VM management processes (e.g. automatic
software update, virus-scan) consume high CPU and memory
resources on inactive VMs for a short period of time. And
active3 VMs may seem to be inactive when only performing
lightweight operations (e.g. text editing) that consume near-
negligible amount of resources. As such, it is difficult to
accurately differentiate inactive and active VMs by relying on
resource monitoring information.

To correctly identify and address these inactive VMs, we
create iCSI (inactive Cloud Server Identification) system; a
cloud garbage VM collector to improve utilization and cost
efficiency of private cloud data centers. iCSI has three main
components: a lightweight data collector, a VM identifica-
tion model, and a recommendation engine. The lightweight
data collector periodically gathers primitive information from
VMs. The primitive information can be easily obtained by
native commands supported by most operating systems. In a
public cloud setting, such measurement mechanisms via such
OS modifications would generally be prohibited because of
privacy concerns [14–18]. However, in this work, we leverage
the nature of the private cloud environment, in which such
modifications are supported and generally considered to be
in-line with enterprise goals as a whole, to measure and
collect such information. In other words, our approach is that a

3In this paper, we use active VM as a contrary of inactive VM. Active VMs
are used for productive works in their organization.

1

cooperative framework in warranted, in which users want help
identifying VMs to “reclaim”, and users are willing to tolerate
additional intra-VM reporting measures to support this.

With the data collection, we leverage an VM identification
model from our previous work [19] in order to create iCSI
system. This model is used to identify active or inactive VMs
from given VM dataset. The VM identification model first
determines the purpose of VMs via its running processes
and extracts the most important features for the identification.
Direct user feedback with random sampling is used to find
specific features that are highly correlated with identifying
active/inactive VMs with different purposes. A supervised
learning model is employed to identify these active and
inactive VMs. This learning model dynamically selects the
most proper features according to the purposes of VMs. To
reduce misclassification rate, the identification model performs
an affinity analysis of network dependencies among target
VMs and adjusts identification results. With this identification
model, the recommendation engine offers proper recommen-
dations to end users. The recommendation includes suspending
VMs, suspending VMs, resizing VMs, and others.

To evaluate the performance of this cloud garbage VM
collector, iCSI is deployed into multiple data centers for IBM
research division and monitors more than 750 production
VMs. We measure the identification accuracy, cost efficiency,
and utilization improvement of iCSI compared with two state-
of-the-art approaches. The experiment results show that our
model has a 20% higher accuracy than other state-of-the-art
approaches. Also, iCSI can improve cost efficiency with 23%
and shows increased resource utilization with 45%.

The contributions of this paper are:
• We design an end-to-end cloud garbage VM collector that

identifies inactive VMs and provides proper management
plans for these inactive VMs. This system improves cost
efficiency and resource utilization of private cloud data
centers with the management plans.

• We evaluate the performance of iCSI with real-world
cloud dataset with 750 VMs. iCSI can successfully iden-
tify inactive VMs with 90% of accuracy.

• We also show that iCSI can save 23% of VM cost and
improve resource utilization with more than 45% with
proper recommendations for VM management.

Note that this work uses an important finding from our
previous work [19] that was focused on creating a model that
identifies activeness or inactiveness of VMs in private data
centers. This model is embedded as a component into iCSI
system. While the model provides important information on
VM identification, this work further concentrates on showing
that how effectively iCSI system can improve data center
management for private clouds. i.e., VM cost and utilization.

The rest of this paper is organized as follows: Section II
describes background of cloud garbage VM collector. Sec-
tion III reviews state-of-the-arts approaches for the cloud
garbage VM collections. Section IV describes how we analyze
VM data to identify active and inactive VMs. Section V

contains the design of iCSI system and Section VI provides
the performance evaluation results of iCSI and Section VII
concludes this paper.

II. BACKGROUND

With the promise of providing high availability, scalability,
and also efficiency, enterprises and research institutions con-
tinue to move to public/private clouds, and cloud providers ex-
pand the number of data centers globally at the same time [20].
The revenues of major cloud providers such as Amazon Web
Services (AWS) [21], Microsoft Azure [22], Google Cloud
Platform [23], and IBM SoftLayer [24] have been largely
growing, meaning that more VMs have been provisioned and
actively running. However, the overall infrastructure resource
usage has been declined as the number of inactive VMs have
been increasing. Figure 1 illustrates the VM utilization in an
enterprise data center with 200 VMs. More than 90% of VMs
use less than 20% of CPU and 35% of memory [25].

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100
C

D
F

CPU Utilization (%)

(a) CDF of CPU Utilization.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100

C
D

F

Memory Utilization (%)

(b) CDF of Memory Utilization.

Fig. 1. CDF of VM Utilization in an Enterprise Data Center (measured with
200 VMs).

As customers want to get help from cloud providers to
efficiently manage computing resources, cloud providers offer
monitoring services such as CloudWatch [26] for resource
usage [27], and network traffic [28]. Customers are able to
scale in/out based on the monitoring results when VMs are
registered in a scaling group [29, 30], but they are limited
to manage only replicated resources. Some cloud providers
offer a reactive approach for cloud garbage VM collection
to recommend to delete inactive servers. The reason why it
remains in passive mode is because the recommendations are
only based on the resource activities so that the accuracy rate
is not high. In this circumstance, customers are not able to
intelligently decide which VMs can safely be terminated or
suspended in order to reduce operational expenditure.

Since the cloud providers do not properly support the cloud
garbage VM collection, customers come up with proprietary
approaches for the private clouds. Two main approaches are
graph-based and rule-based garbage VM collections. The
graph-based method uses a graph reference model to identify
connected servers (i.e., graph components) through network
connections and propagates the significance of known impor-
tant servers [8, 9]. On the other hand, the rule-based method
defines rules for terminating or suspending VMs based on the
experience of resource behaviors, and VM users are required to
perform management actions when the VMs are matched with
the predefined rules [10, 31, 32]. Both methods are limited in
that the dynamic cloud workloads cannot be characterized as

2

a certain number of behaviors and there are many servers that
are not connected with other servers at all.

Instead of relying on the abstract representations such as
graphs or rules, it would make more sense to closely look
at the features of each VM and characterize each server in
different manner because each VM may have distinguishable
behaviors according to different purposes. As not all VMs
have the same purpose and corresponding behaviors, the
classification of the purposes may be able to categorize the
behaviors of the certain purpose types. Then, each purpose
type can characterize VM behaviors, and determine a VM is
active or not. Also, since observing and analyzing features
at a certain point of time do not reflect the comprehensive
behavior, the cloud garbage VM collectors should consider
the time series of certain behaviors such as login activities,
resource usages, and network connectivities. We explain how
we apply this idea for designing a new cloud garbage VM
collector in the following sections.

III. RELATED WORK

There are three approaches for the infrastructure garbage
collection with active/inactive VM identification: graph-
based [8, 9], rule-based [10, 11, 31, 32], and utilization-
based [12, 13, 33]. The graph-based approach leverages a
network affinity model that references connectivity between
VMs, and propagates importance of VMs to connected ones.
The rule-based approach makes use of predefined rules (or
annotations) to identify any VMs that violate the rules. The
utilization-based approach leverages system-level statistics
(e.g. CPU, memory, network) to detect inactive resources/VMs
and consider VMs are inactive when utilization of the VMs is
lower than the predefined threshold.
Graph-based approach: Pleco [8] is a tool to detect inactive
VMs in IaaS clouds. Similar to memory garbage collector [34]
(in many programming languages such as LISP, Java, and C#)
which identifies garbage objects by examining object refer-
ences, Pleco constructs a VM reference model according to a
dependency of applications (network affinity model [35–37]),
assigns weight to each reference, and calculates a confidence
level for identified inactive VMs.

Garbo [9] generates a directed acyclic graph with con-
nectivity (dependency) of resources and adopts this idea to
garbage VM collection mechanism. However, in many cases,
standalone cloud resources – having no dependency with other
cloud resources – cannot necessarily be identified as unused
resources by only using resource dependencies. For example,
standalone cloud resources often have very important dataset
for an organization (e.g., key files) and many VM instances
often have all tier components (e.g., LAMP4) for services and
they are unlikely to have any connections with other cloud
resources.
Rule-based approach: Netflix Janitor Monkey [10] identifies
unused resources based on a set of rules defined by data center
operators. This set of rules is focused on an “age factor”

4Linux, Apache, MySQL, and PHP.

of cloud resources on AWS. For instance, Janitor Monkey
marks resources inactive if they are not used for more than
a predefined rules (e.g., 3 days). However, defining the proper
rules is a challenging task for the data center/cloud operators
because it is very hard to predict when the (individual)
resources will be used again. In addition, Janitor Monkey
does not consider any connectivity (or dependency) among
resources as well as the significance of the target resources, it
can hardly adapt to dynamic scenarios for cloud management.

Poncho [31] is used to maintain Magellan cloud [38]
at Argonne National Laboratory (open-stack based). The
core idea is to use annotation and notification. Resource
owners are required to provide detailed annotations (their
own rules) for their resources. The rules are not meant for
global uses, but defined for specific workloads. The examples
of annotations include reboot when, terminate when, or
snapshot on terminate. terminate when means that the
VM can be terminated after X hours of execution, and this
implicitly offers VM to be used for another job. With pre-
defined annotations by resource owners, inactive time of cloud
resources can be minimized as well as resource utilization of
the entire infrastructure can be improved, but each time users
create VMs, they have to annotate VMs and the annotations
need to be changed as the purpose of VMs is changed.

CloudVMI [32] offers a VMI (Virtual Machine Introspec-
tion) [39] capability to public cloud users. This CloudVMI has
a “garbage VM collection” functionality, which destroys VMs
based on their access history. CloudVMI periodically checks
“access history” of VMs since they were last used. If VM in-
stances have not been accessed for a specific time, the VMs are
destroyed by the garbage VM collector. This CloudVMI only
considers the access history, but does not leverage resource
utilization, significance, or network dependency (connectivity).

More recently, CloudGC [11] identifies idle VMs if the VMs
have been suspended by the end-user or the VMs have not been
active for a long period of time. However, CloudGC is more
focused on how to recycle (re-use) these idle VMs rather than
how to accurately detect the idle VMs.
Utilization-based approach: PULSAR [12] is a cloud re-
source scheduler based on OpenStack Nova scheduler [40]
and is designed to achieve higher resource utilization by
preempting resource for inactive (or sprawled [41]) VMs.
To detect these inactive VMs, PULSAR only relies on CPU
utilization for VMs and the VMs are recognized as inactive if
CPU utilization is lower than a predefined threshold.

Snadpiper [13] is a resource management system to address
hotspots5 in data centers. Snadpiper determines idle VM and
resources with a combination of three utilization factors (CPU,
memory, and network usage) and these idle resources will be
used for such hotspots with overprovisioning techniques.

Calheiros et al. [33] introduced an autonomous resource
provisioning approach for improving utilization for data cen-
ters. Identifying inactive VMs are used to improve data center
utilization. For example, If utilization of data center is lower

5high load instances.

3

TABLE I
EXAMPLES OF THE 25 CLASSES OF SIGNIFICANT USER APPLICATION PROCESSES FOR PROCESS KNOWLEDGE BASE. (WE CAN ONLY SHOW SOME OF

25 CLASSES DUE TO INTERNAL PROPERTY ISSUES.)

Categories Type of Processes
RDBMS Including relational DBMS related processes such as MySQL, PostgreSQL, IBM DB2, Oracle DB etc.
noSQLs Including noSQL processes such as CouchDB, Riak, Cassandra, MongoDB, Redis, and others.
Data Analytics Frameworks Including large-scale data/stream processing applications such as Hadoop, Spark, Flink, Storm, etc.
Containers Including Docker and Linux Containers.
Web Servers Including various types of web servers such as Apache, nginx and custom HTTP servers.
Web Frameworks Including various types of web service related processes such as Node.js, Flask, Django, Ruby on Rails, and others.
Application Servers Including WebSphere, WebLogic, and Tomcat.
User Connection Processes Including processes related to incoming and outgoing connections from users such as ssh, VNC.
Development-related Processes Including version control system and compile-related processes such as git, svn, make, cmake, and others.

User Activity Processes Including a diverse type of user commands that can reflect user activities on VMs such as cp, rm, mv, yum,
apt-get, and others.

Custom User Scripts Including a wide range of user script such as shell script, python, ruby script, and others.
Data Transfer Processes Including processes related to data transfer and communications such as FTP, sFTP, SCP, wget, cURL, and others.

than a predefined threshold, this provisioning system considers
the oldest instances are inactive and the resource manager
destroys them to achieve higher resource utilization. However,
it is unclear which utilization metrics (e.g. CPU, memory, or
I/O) are monitored to determine low data center utilization
and there is a high possibility that the oldest instances are still
active, so this approach could make high false negative errors
without internal information of such VMs.

The utilization-based approach is intuitive since it relies
on statistics from low-level system or applications. However,
in private cloud setting, due to the frequent management
processes, it is very challenging to determine inactive VMs
only with the utilization statistics.

As we reviewed in this section, these three approaches are
limited to achieve efficient cloud garbage VM collection. In
this work, we design an end-to-end system that considers more
specific aspects of systems (e.g., significance/utilization of
target resources, connectivity among resources) for the high
accuracy of inactive VM identification as well as provides
proper management plans to the end users.

IV. FEATURE SELECTION FOR VM IDENTIFICATION

The first step to design the iCSI system is to determine
features on VMs that are collected by iCSI. These features
will be used to identify active and inactive VMs. We perform
an analysis step with sample dataset of VMs in order to find
and extract various features on VMs. For this analysis, we use
randomly selected 70 VMs and these VMs are not used for
our evaluations in the later section.

A. Creating VM Metadata

With the 70 VMs, we collect “human-readable” raw data by
using Linux primitive commands: e.g., ps, netstat, last,
ifconfig, etc. We then create metadata that includes the
factors for the VM identification.
Process Metadata: We first differentiate significant and in-
significant processes running on these 70 VMs. As we dis-
cussed in Section II, relying on VM utilization is not sufficient
to identify active or inactive VMs because several management
processes consume high CPU and memory resources. [42]

However, our insight is that significant user application pro-
cesses could be information for the VM identification and the
user application processes can more contribute to identification
process. With this idea, process metadata is created to give
more weights to user application processes and less weights
(or zero weight) to OS (e.g., kernel processes) or management-
related processes (e.g., patch-update). To this end, we create
a process knowledge base with 25 categories of significant
processes, which are frequently used by IBM end users. We
obtain end users’ feedback to properly create these process
categories. Examples of the 25 categories of significant user
application processes are described in Table I.
Utilization Metadata: We create the utilization metadata with
three types of factors: CPU, memory, and I/O usage. We
extract CPU and memory utilization for all processes (overall
VM utilization) as well as for a particular process. I/O uti-
lization is extracted from refining output from “ifconfig”
command and I/O metadata includes the amount and size of
sending and receiving network packets. We also consider the
average and the maximum size of I/O usage.
Login Metadata: Login (user access) history can possibly
provide diverse aspects of user access pattern to VMs. While
we cannot figure out what kinds of actions VM users took
in the past with the login history, we can create several
useful login metadata such as frequency/duration of logins,
differentiated logins in daytime and nighttime.
Network Connection Metadata: We can extract the number
of open TCP ports on VMs and established connections with
internal/external entities. The internal/external entities can be
users, applications, and other VMs. These factors incorporate
with process metadata to figure out the established connections
from significant/insignificant processes.
Other Metadata: We can create metadata with IP and host
information of VMs, which can be useful to determine the
network connectivity among VMs.

B. Feature Selection

This “feature selection” step is to find common (strong)
correlations that are able to differentiate active and inactive

4

Proc,
Login,
Net. Conns.

Identi�cation Model

(Of�ine)
Model Training

(Of�ine)
Identi�cation
Model

(Online)
Model

Recommendation
 Engine

VM
Management

VM Users

Data Collector
(Section V-(A))

VM Identi�cation
 (Section V-(B))

VM Mgmt. Action
 (Section V-(C))

Recommendation for Inactive VMs. (e.g. suspending VM, resizing VM)

Data
Collection
Manager

Private Cloud

Fig. 2. iCSI System Architecture.

VMs. To decide these features more efficiently, we manually
classify (label) the purpose of each VM and compute Pearson
correlation coefficient [43] of all factors in the VM metadata
according to the classified purpose of each VM. Note that if
the coefficient of a factor is close to 1, the factor is highly
correlated with a VM’s identification. Otherwise (coefficient
is close 0), the factor has weak correlation with respect to
identifying a VM’s activeness or inactiveness identification.
Then, we determine the features if the features have more than
0.75 of the coefficient. These features will be used by iCSI
system. While the manual classification step for the purpose
of VM can help us find and select stronger features for the
identification process, it also gives us another research problem
meaning that how to properly determine the purpose of all
VMs. We will discuss more about this problem in the next
section of this paper.

V. SYSTEM DESIGN

Figure 2 illustrates the architecture of iCSI system – a
cloud garbage VM collector. iCSI performs three consecutive
steps: data collection, identification, and action. A lightweight
data collector is designed to manage data collection step.
An VM identification model determines active and inactive
VMs with the collected data. With the identification results,
recommendation engine generates action plans to VM end
users.

A. Lightweight Data Collector

The lightweight data collector consists of data collection
agents and manager. The agents are running on each VM
and periodically execute a bash script at predefined time
interval. The bash script collects the primitive, but useful
information from each VM. This information includes the
factors that we described in Section-IV-A. The size of data
from each collection operation is less than 50 Kbytes and the
collected data will be sent to the data collection manager via
cURL [44] tool. The manager stores the primitive data and
creates metadata that will be used by the VM identification
model.

In order to quickly implement and deploy this data collector,
we rely on an IBM proprietary infrastructure management
system called bigfix [45], but this tool can be easily re-
placed with other tools such as puppet [46], chef [47], or

others [48–50]. Moreover, instead of embedding “the data
collection scripts” into target VMs, actual cloud practitioners
can consider leveraging VMI-based approaches [39, 51–54] to
efficiently collect semantics on the VMs.

Since this data collector will be deployed to production data
centers and it must not mess up production services (e.g.,
no SLA violations) to end users6, we pick a small-scale data
center as our testbed and monitor the end-to-end safety of this
collector for three weeks. During this validation period, we
also tune several configurations of the data collector such as
the data collection interval. The decision for data collection
interval is based on the tradeoff between the performance
impact of this collector on a VM’s main workload and the
quality of collected dataset. We start with finer-grained collec-
tion interval (e.g., 1 hour or less) and gradually increase the
this interval to 12 hours. We realized that the data collection
at every 4 hours interval can provide rich dataset that contains
sufficient semantics, which timely reflect the change of VM
usage pattern (e.g. CPU utilization). And this time interval (4
hours) has negligible impact on the VM’s performance. After
the validation, this collector can be deployed to multiple IBM
data centers in US.

Protecting end users’ privacy is a critical concern to design
this data collector because the dataset can contain privacy
information for end users. Thus we exclude processes related
to password (e.g. passwd on Linux) or user management (e.g.
adduser). Moreover, this collector gathers data from only
US-owned VMs according to EU’s the general data protection
regulations [55].

B. VM Identification Model
With VM metadata periodically gathered and created by

the data collector, VM identification model determines active
and inactive VMs using the insight from Section-IV-B. A
summary of the process performed by this model is illustrated
in Figure 3. The model identifies VMs through the following
procedures:

1) Procedure #1: Base case VM identification.
2) Procedure #2: Determining the purpose of VMs with

running processes.

6Although all the end users are internal employees at IBM, QoS (Quality
of Service) and SLA (Service Level Agreement) must be guaranteed in all
private clouds. So the end-to-end safety of data collector is very critical.

5

VM Features

P2: Determining
the Purpose of VM

No

P3: SVM
Classi�cation

Active VMsInactive VMs

Yes:
Identi�
by
base case.

No Connection
with Active VM

Result � 0.5 Result > 0.5

Connection with Active VMs

Fig. 3. VM Identification Process.

3) Procedure #3: Active/inactive VM classification with
linear support vector machine (SVM).

4) Procedure #4: Performing network affinity analysis to
discover network dependencies among VMs.

While the goal of this identification model is to correctly
detect active and inactive VMs, minimizing the number of
false negative errors is also critical. False negative errors
in the identification means that active VMs are incorrectly
identified as inactive VMs. If a VM is suspended or terminated
with a false negative error, the actual owner of the VM will
(temporarily or permanently) lose all data and application
configurations in the VM. This is a clear example of SLA
(Service Level Agreement) violation cases.

Procedure #1 – Base case VM identification. The iden-
tification model filters apparently inactive VMs out for the
identification process with the simple, but effective rules.
These rules are based on “explicit” usage pattern of inactive
VMs. The rules are 1) no reboot for a VM over the last six
months, 2) no significant processes running on that VM, 3) no
login actives on the VM over the last three months, and 4) no
established connections with other external applications/VMs
during data collection period. If a VM satisfies all these rules,
the identification model considers the VM as inactive one.
These rules can detect 5–7% of inactive VMs (according to
the analysis with 70 sample VMs). This procedure helps other
procedures performed later on by making smaller size of the
VM dataset.

Procedure #2: Determining the purpose of VMs. This
step is to apply the important findings (Section-IV-B) for the
identification process. To use specific (strong) correlated fac-
tors, the VM identification model should properly determine
the purpose of VMs. The intuition is that the purpose of
VMs can be determined by the VMs’ running processes. For
example, if RDBMS processes (e.g., PostgreSQL, MySQL)
are running on a VM, this VM is commonly used for storage
purpose. Similarly, if Hadoop processes are running on a VM,
this VM is highly likely to be used for analytics purpose.
However, this insight does not always work for all cases. While
RDBMS is mainly used to store structured data, but it does

not always mean that the VM with RDBMS is only used for
storage-purpose. In many cases, RDBMS can be a part of
an application configuration (e.g., LAMP) for development-
purpose or test-purpose VMs.

To properly decide the possible purposes of VMs, we lever-
age user feedbacks for 70 VMs (used for data analysis/feature
selection in Section-IV) and decide weights for the purposes
associated with running processes. We then create a function
that maps type of running processes to possible purposes. This
function returns multiple purposes with different weights as
shown in below.

Input : processi

Output : {purpose1 : w1, purpose2 : w2, ..., purposen : wn}

The outputs of this function – weights associated with
different purposes of VMs – are directly used by a linear SVM
classifier in the next procedure.

Procedure #3: Active/Inactive VM classification. The VM
identification model employs a supervised learning model
called a linear SVM [56] to classify active and inactive VMs.
SVM is a widely-used classifier to solve diverse research prob-
lems in cloud computing area (e.g., workload prediction and
classification [35, 57], application performance modeling [58],
anomaly detection [59]). Linear SVM is an optimal margin-
based classifier with linear kernel and tries to find a small
number of data points that separate all data points of two
classes with a hyperplane [56].

A key insight on employing the linear SVM is that this
classifier dynamically selects and uses different correlation
features for the classification according to the purposes of
VMs. Table II describes specific correlated features selec-
tively used by the classifier. As shown in Table II, both
analytics- and devops-purpose mostly use VM utilization-
related features such as CPU and memory usage, development-
purpose more focuses on user access and development related
processes (e.g., git [60]) as main features, and backup/storage-
purpose concentrates on particular utilization features associ-
ated with storage/backup operations (e.g., I/O, memory) for
SVM classification. Others-purpose is the most challenging
case since most of these VMs do not have any interesting
features in terms of running processes or utilization. So, the
SVM classifier uses only two features; daytime login fre-
quency/duration and maintenance-related features (e.g., yum,
apt-get). Especially for the daytime login frequency and
duration, we collect information from only US-owned VMs
for the identification and we assume that all VM users are in
the US time zone. Thus, we extracted daytime login duration
and frequency features based on the US time zone.

Moreover, as VMs can be used for multiple purposes, the
identification model runs the SVM classifier multiple times
with different weights. The VMs are classified as active or
inactive with a weighted sum of classification results for each
purpose of VMs. While the linear SVM provides a binary
result ({0, 1}) for each classification operation, a classification

6

TABLE II
SPECIFIC FEATURES ACCORDING TO PURPOSE OF VMS USED BY LINEAR

SVM CLASSIFIER.

Purpose of VM List of Specific Features

Analytics
%CPU of VM, %CPU of significant user procs,
%MEM of VM, # of open ports, # of established
connections.

DevOps7 # of significant processes, %CPU/%MEM of
significant procs, # of established connections.

Development
of logins, average login hours (daytime),
of ssh/VNC connections, # user development
activity processes.

Storage/Backup
of storage/backup procs, Network I/O usage,
%MEM of significant user processes,
of established connections.

Others # of user maintenance activity processes, # of
daytime logins, duration of daytime logins.

result could have a value between 0 and 1. We use 0.5 of
a threshold to differentiate active and inactive VMs and this
threshold works very well for our cases. The VM identification
model considers VMs as inactive when they have less than or
equal to 0.5 of the classification result. For VMs with greater
than 0.5 of classification result, the model recognizes them as
active VM.

Procedure #4: Network affinity analysis. The last procedure
of the VM identification model is to perform a network affinity
analysis (NAA) to figure out important dependencies of all
VMs. NAA can reduce false negative errors by validating the
classification result with the dependencies. NAA is a well-
known approach for migrating legacy enterprise applications
to cloud environment with discovering network connections
(dependencies) with peers (e.g., applications, servers) [36, 37,
62]. The VM identification model investigates all external
connections of VMs that are classified as inactive (in the
procedure #3). This model adjusts the VM’s classification
result from inactive to active if a network dependency with
active VMs exists. NAA is particularly useful for VMs with
cluster configurations (e.g., Hadoop [63], Mesos [64] or Ku-
bernetes [65]). Usually, master VMs of such clusters have
strong characteristics to be properly classified as active or
inactive VM, but slave ones tend to have weak characteristics
for the identification process. NAA propagates the confidence
determined from master VMs to slave ones. In the evaluation
section, we will assess the impact of NAA on how much it
can contribute to accuracy improvement for iCSI system.

C. Recommendations Engine

Through the previous two steps, iCSI can identify active
and inactive VMs from data centers. With the identification
results, the recommendation engine provides the following
action plans to the owner for inactive VMs: terminating
VM, suspending VM and resizing VM. The recommendation
engine takes defensive policies for inactive VMs since this
system is deployed to real production data centers, meaning

7A clipped compound of development and operation [61].

TABLE III
THREE VM RECOMMENDATION POLICIES OF ICSI.

Recommendation Trigger Conditions
No Actions Active VMs (Classification result > 0.5.)
Terminating VM Classification result is equal to 0.
Suspending VM 0 < Classification result ≤ 0.5.

Resizing VM 0 < Classification result ≤ 0.5 and
significant processes are running on the VM.

that misidentification errors could have actual impact on the
business in the corporation. The summary of three recommen-
dation policies is described in Table III.

1) Terminating VM: This recommendation is proposed to
users when either their VMs are identified as inactive by the
procedure #1’s rules or the classification result of VMs is
completely inactive (the weighted sum of classification results
in procedure #3 is 0). When the users terminate their VM,
they can create a snapshot for the VMs if necessary.

2) Suspending VM: This recommendation is provided
when VMs have a classification result of greater than 0 (not
completely inactive) and have no significant processes on the
VMs. In this case, iCSI does not recommend the users to
terminate their VMs since there is a certain possibility that
the VMs could be temporarily inactive.

3) Resizing (Downsizing) VM: This recommendation is
suggested to end users of inactive VMs when the VMs have
significant processes (in most cases, the classification results
of these VMs are close to the active threshold). VM size with
lowest cost is recommended to the users for resizing operation.
Determining the optimal VM size for down sizing is also very
important research problem, however, we think this is out of
scope of this paper. We leave this problem as our future work.

VI. PERFORMANCE EVALUATION

In this section, we describe the performance evaluation of
iCSI system on the production data centers at IBM.

A. Evaluation Setup

Data centers and VM dataset: iCSI system is deployed
into multiple data centers for IBM private clouds. With this
deployment, iCSI can get access to 750 VMs in total. The
data collector of iCSI gathers VM information in every four
hours and total duration of measurement period is four weeks.
For obtaining the ground truth, we ask actual users of these
750 VMs and use their feedbacks as the ground truth for this
evaluation.

Evaluation criteria: We first evaluate the accuracy of iCSI
system for identifying active and inactive VMs in data centers.
We then measure both cost saving and utilization improvement
of VMs with the recommendations from iCSI system.

Performance metrics: With respect to the identification accu-
racy, we measure three well-known metrics for the classifica-
tion accuracy: recall, precision, and f-measure. Recall is more
sensitive to the number of false negative errors and precision
is affected by the number of false positive errors. F-measure is

7

TABLE IV
TWO TRUE CASES AND FALSE CASES IN THE IDENTIFICATION ACCURACY. (TP: TRUE POSITIVE, TN: TRUE NEGATIVE, FY: FALSE POSITIVE, FN:

FALSE NEGATIVE.)

VM Identification Result
Active Inactive

Truth Active TP: Active VMs are correctly identified as active. FN: Active VMs are incorrectly identified as inactive.
Inactive FP: Inactive VMs are incorrectly identified as active. TN: Inactive VMs are correctly identified as inactive.

TABLE V
VM IDENTIFICATION ACCURACY OF ICSI.

Recall Rate Precision Rate F-measure Score
Results 0.90 0.81 0.85

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Recall Precision F-Measure

0.83

0.90

0.78
0.81 0.82

0.85

A
cc

ur
ac

y

w/o NAA
w/ NAA

Fig. 4. Impact of Network Affinity Analysis on the Identification Accuracy.

a harmonic mean of recall and precision. These three metrics
are shown in below.

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
(1)

F −Measure =
2×Recall × Precision

Recall + Precision
(2)

Reducing the false negative errors is very critical to iCSI
system, so recall is the most important metric for the identifi-
cation accuracy. To understand these above metrics, Table IV
describes two true and error cases in our evaluation.

Cost saving and utilization improvement of VMs are mea-
sured with an assumption that users for all inactive VMs are
accept and follow the recommendations from iCSI system.
Cost saving is normalized over estimated cost for the next
billing cycle. Utilization is also normalized over the current
utilization of the private cloud infrastructure.

Baselines: We use two state-of-the-art cloud garbage collec-
tion approaches for the baselines; Pleco [8] and Garbo [9].
Pleco identifies active and inactive VMs with a combination
of a reference model (connectivity) and decision tree classi-
fication (utilization). Garbo is a graph-based VM cleaning-up
tool for AWS. Garbo creates a directed acyclic graph from
core nodes and performs mark and swap operation to clean
up inactive VMs. In our evaluations, these two baselines are
evaluated from the same setup with that of iCSI. e.g., the same
VM dataset from the same data centers.

B. Accuracy of VM Identification

We measured the identification accuracy of iCSI in isolation
and then compare its accuracy with two baselines. We also

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1 2 3 4 5 6

C
D

F

of Network Connections

(a) Inactive VMs.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 5 10 15 20

C
D

F

of Network Connections

(b) Active VMs.

Fig. 5. CDF of External Network Connections of VMs.

TABLE VI
STATISTICS FOR EXTERNAL CONNECTIONS OF VMS.

Active VMs Inactive VMs
Mean # of External Conns. 2.3 0.5

Standard Deviation 4.1 0.9

validate the accuracy results with k-fold cross validation. [56]
Table V shows accuracy results of iCSI for VM identification.
iCSI can identify active VMs with 0.90 of recall, 0.81 of
precision, and 0.85 of f-measure. In this evaluation, iCSI
identifies 472 (63%) of active VMs and 278 (37%) of inactive
VMs. Especially for the recall, iCSI has 47 false negative
errors.

To evaluate the impact from Network Affinity Analysis
(NAA), we measure two different accuracy results of iCSI with
and without of the procedure #4 in the identification step. The
results are shown in Figure 4. NAA improves the identification
accuracy with 3%–7% and has more impact on recall rate with
reduced false negative errors from 69 to 47.

In order to understand this impact, we calculate CDF (Fig-
ure 5) and statistics (Table VI) of external network connections
for all 750 VMs. We found that only 30% of inactive VMs
have external connections and more than 60% of the active
ones have external connections with other VMs. Moreover,
inactive VMs have average of 0.5 external connections (σ
= 0.9) and inactive ones are connected with 2.3 of external
connections in average (σ = 4.1). These results indicate that
active VMs are highly likely to have connections with other
active VMs.

We also compare the accuracy results with other approaches.
The results are shows in Table VII. In all accuracy metrics,
iCSI outperforms (11%–20% better accuracy) two baseline.
Pleco and Garbo only have 0.75 and 0.70 of recall, but iCSI
shows 0.90 of recall. To understand these results, we need to
understand the technical differences in the three approaches.
Pleco and Garbo are a graph-based approach, meaning that
connectivity with other VM is the most critical factor to

8

TABLE VII
ACCURACY COMPARISON WITH TWO BASELINES.

Recall Rate Precision Rate F-Measure Score

iCSI 0.90 0.81 0.85
Pleco 0.75 0.69 0.72

Garbo 0.70 0.67 0.68

determine inactive or active VMs. While we confirm that
the connectivity could be a key to identify active/inactive
VMs, but other factors (e.g., login, utilization) are also very
critical. For example, in many cases, VMs performs significant
processing without any external connections. As shown in
Figure 5-(b). Approximately 30% of active VMs have no
external connections, but they are identified as active by actual
users.

These (stand-alone) VMs can be very challenging use cases
for the graph-based approach to correctly identify them as
active or inactive VMs. Since VMs are created and used
for different purposes, identification models should cautiously
select proper features from multiple dimensions of information
including network connectivity/dependency, utilization, login
history, and others.

C. Cloud Cost Saving

With the identification results, we evaluate how much cost
iCSI can save for the private cloud infrastructure. To accurately
measure the cost saving, we first define a penalty cost function
for misidentification error (especially for false negative errors)
as expressed in equation-(3) where n is the number of recom-
mendation policies and m is the number of misclassified VMs.
And the total cost is calculated by equation-(4). This penalty
cost function is inspired by penalty functions [66, 67] for eval-
uating under-provisioning case of cloud resource management.
This is because VM users would (temporarily or permanently)
face under-provisioning circumstance if the users suspend or
terminate their VMs based on the recommendation with false
negative errors. Moreover, the penalty cost function considers
differentiated penalty weight (w in equation-(3)) according to
users’ actions with different recommendations. For example,
“termination VM” has the highest penalty weight and “resizing
VM” has the lowest penalty weight.

PenaltyCost =

n∑
i=1

(wi

m∑
j=1

costvmj) (3)

TotalCost = CostactiveV Ms + PenaltyCost (4)

Figure 6 shows the estimated results for the VM cost
of three approaches. The results are normalized over the
(estimated) cost for next internal billing cycle without any
VM management for inactive VMs. iCSI can save 23% of
cloud cost, which is 12%–14% more savings compared to two
baselines (Pleco can save 11% of VM cost and Garbo is able
to reduce 9% of VM cost). This result is higly related to the
number of false positive errors in the identification process of
three approaches. Since iCSI has the lowest numbers of false

 0

 0.2

 0.4

 0.6

 0.8

 1

iCSI Pleco Garbo

0.77
0.89 0.91

N
or

m
al

iz
ed

 C
os

t S
av

in
g

Fig. 6. Normalized VM Cost of Three Approaches. (1.0: Estimated Cost of
Next Billing Cycle). This result is normalized over the estimated VM cost
without any VM management according to the recommendations from three
approaches. In this graph. Lower value indicates better cost efficiency.

negative errors, it has the smallest impact from the penalty
function. Pleco and Garbo generate 115 and 127 of false
negative errors, but iCSI has only 47 false negative errors
among 750 VMs. This indicates that iCSI could maximize
the cost saving with the lowest penalty cost.

D. VM Utilization Improvement

We measure the improvement of VM utilization with three
approaches. The measurement results are normalized over the
current utilization of the IBM private cloud. Note that we
do not consider utilization improvement from false negative
errors since these VMs have no actual benefits to the utilization
improvement.

TABLE VIII
AVERAGE UTILIZATION IMPROVEMENT OF THREE APPROACHES.

iCSI Pleco Garbo
Average Improvement of VM Utilization 46% 31% 29%

Figure 7 illustrates the evaluation results from the diverse
aspects of VM utilization and Table VIII shows the average
improvement for these three approaches. While all three ap-
proaches can also improve the VM utilization, iCSI achieves
the largest improvement (46%) of VM utilization (Pleco’s
utilization improvement is 31% and Garbo’s utilization im-
provement is 29%). For all the 8 categories of utilization
metrics, while the differences between iCSI and baselines
are similar, the CPU and memory utilization improvement
for user applications (Figure 7-(c) and (d)) show the largest
difference. i.e. 20% difference for CPU utilization and 26%
difference for memory utilization of user applications. As iCSI
considers diverse factors from VMs to identify inactive/active
VMs, it has more advantages to archive higher utilization for
significant processes (e.g. user applications). However, since
the baselines (graph-based approaches) are more concentrating
on the connectivity, improving (CPU and memory) utilization
for user applications is challenging for the baselines.

VII. CONCLUSION

We have presented iCSI – a cloud garbage VM collector
to identify inactive VMs, which improves the cost efficiency
and the VM utilization. iCSI has three important steps of
“data collection”, “VM identification”, and “recommendation.”

9

 100

 110

 120

 130

 140

 150

iCSI Pleco Garbo

146.35%

137.40%
134.15%

N
or

m
. C

P
U

U
til

iz
at

io
n

(%
)

(a) Improvement of VM CPU Utilization.

 100

 110

 120

 130

 140

 150

iCSI Pleco Garbo

145.58%

128.92%
125.30%

N
or

m
. M

E
M

U
til

iz
at

io
n

(%
)

(b) Improvement of VM Memory Utilization.

 100

 110

 120

 130

 140

 150

iCSI Pleco Garbo

148.39%

129.35% 127.10%

N
or

m
. C

P
U

 U
til

iz
at

io
n

of
 U

se
r A

pp
lic

at
io

ns
.(

%
)

(c) Improvement of CPU Utilization for User Applications.

 100

 110

 120

 130

 140

 150

iCSI Pleco Garbo

145.71%

120.95% 119.05%

N
or

m
. M

E
M

 U
til

iz
at

io
n

(%
)

of
 U

se
r A

pp
lic

at
io

ns

(d) Improvement of Memory Utilization for User Applications.

 100

 110

 120

 130

 140

 150

iCSI Pleco Garbo

140.95%

131.92%
128.18%

N
or

m
. N

et
w

or
k

I/O
 (

%
)

(e) Improvement of VM Network I/O Usage.

 100

 110

 120

 130

 140

 150

iCSI Pleco Garbo

145.67%

135.10%
131.51%

N
or

m
. #

 o
f E

st
ab

lis
he

d
C

on
ne

ct
io

ns
 (

%
)

(f) Improvement of the Number of Established Network Connections.

 100

 110

 120

 130

 140

 150

iCSI Pleco Garbo

146.55%

133.82% 131.98%

N
or

m
. L

og
in

 H
ou

rs
pe

r
a

V
M

 (
%

)

(g) Improvement of Login Hours per VM.

 100

 110

 120

 130

 140

 150

iCSI Pleco Garbo

147.80%

132.08% 131.45%

N
or

m
. N

um
be

rs
 o

f
Lo

gi
ns

 p
er

 a
 V

M
 (

%
)

(h) Improvement of the Number of Logins per VM.

Fig. 7. VM Utilization Improvement with Three Approaches. All Results are Normalized.

For the data collection, we design a lightweight approach
to periodically gather primitive, but holistic information for
running VMs. With the data collection, we describe how we
analyze the data in order to extract significant features for
active/inactive VM identification. iCSI determines active and
inactive VMs through the following steps. iCSI first performs
a base case classification for inactive VMs, then determines
the purpose of each VM. By leveraging a supervised learning
technique (SVM), iCSI identifies active/inactive VMs with
corresponding features to the purpose. Finally, iCSI validates
the identification results using a network affinity model, and
propagates the confidence to connected VMs. With the identifi-
cation results, iCSI recommends proper actions to the inactive
VM users. i.e., terminating, suspending or resizing VM.

Our evaluation with 750 VMs from enterprise data centers
shows the accuracy is 90%, which is 15% – 20% higher
than existing methods. With this accuracy, iCSI can save 23%

of cloud cost, which is 12% – 14% better achievement as
compared to the baselines. We also demonstrate that iCSI can
improve more than 45% of VM utilization.

In the near future, we will investigate an automated ap-
proach to address inactive VMs with iCSI. Since the current
iCSI system relies on the actual user’s decision to manage
inactive VMs. Among three recommendations we have now,
we will more focus on an intelligent VM resizing scheme that
precisely determines an optimal size of VMs based on the
actual processing requirements to individual VMs.

ACKNOWLEDGMENT

We would like to show our gratitude to Mr. Ivan Dell’Era,
Mr. Carlos Fonseca and Dr. Nikos Anerousis at IBM for
their timely and numerous supports for this project. We also
thank anonymous reviewers for the invaluable comments and
suggestions to improve this paper.

10

REFERENCES

[1] Melanie Posey Robert P. Mahowald, Chris Morris, Mark
Schrutt, Satoshi Matsumoto, Vladimir Kroa, Petr Zajonc, Li-
nus Lai Frank Gens, Hamza Naqshbandi, Melih Murat, David
Senf, David Tapper, Alejandro Florean, Mayur Sahni, Thomas
Dyer, and Benjamin McGrath. Worldwide Hosted Private Cloud
Services Forecast, 2015–2019: New Models for Delivering
Infrastructure Services. In IDC Tech Report, September 2015.

[2] Gen Lin, David Fu, Jinzy Zhu, and Glenn Dasmalchi. Cloud
Computing: IT as a Service. IT Professional, 11(2):10–13,
March 2009.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the Art of Virtualization. In the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), NY,
USA, October 2003.

[4] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew
Warfield. Live Migration of Virtual Machines. In the 2nd

USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’05), Boston, MA, USA, May 2005.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David
Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A View
of Cloud Computing. Communications of the ACM, 53(4):50–
58, April 2010.

[6] Zach Hill and Marty Humphrey. A Quantitative Analysis of
High Performance Computing with Amazon’s EC2 Infrastruc-
ture: the death of the local cluster? In the 10th IEEE/ACM In-
ternational Conference on Grid Computing (Grid ’09), Alberta,
Canada, October 2009.

[7] Jonathan Koomey and Jon Taylor. 30 percent
of servers are ‘comatose’. http://anthesisgroup.
com/wp-content/uploads/2015/06/Case-Study
DataSupports30PercentComatoseEstimate-FINAL 06032015.
pdf. ONLINE.

[8] Zhiming Shen, Christopher Young, Sai Zeng, Karin Murthy, and
Kun Bai. Identifying Resources for Cloud Garbage Collection.
In the 12th International Conference on Network and Service
Management (CNSM ’16), Montreal, Quebec, Canada, Novem-
ber 2016.

[9] Netanel Cohen and Anat Bremler-Barr. Garbo: Graph-based
Cloud Resource Cleanup. In the ACM Symposium on Cloud
Computing (SoCC ’15), Kohala Coast, Hawaii, USA, August
2015.

[10] Netflix. Janitor monkey. https://github.com/Netflix/
SimianArmy/wiki/Janitor-Home. ONLINE.

[11] Bo Zhang, Yahya Al Dhuraibi, Romain Rouvoy, Fawaz Paraiso,
and Lionel Seinturier. CLOUDGC: Recycling Idle Virtual Ma-
chines in the Cloud. In the 5th IEEE International Conference
on Cloud Engineering (IC2E ’17), Vancouver, Canada, April
2017.

[12] David Breitgand, Zvi Dubitzky, Amir Epstein, Oshrit Feder,
Alex Glikson, Inbar Shapira, and Giovanni Toffetti. An Adap-
tive Utilisation Accelerator for Virtualized Environments. In
the 2nd IEEE International Conference on Cloud Engineering
(IC2E ’14), Boston, MA, USA, March 2014.

[13] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and
Mazin Yousif. Black-box and Gray-box Strategies for Vir-
tual Machine Migration. In the 4th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’07),
Cambridge, MA, USA, April 2007.

[14] IBM. Softlayer – Privacy Agreement. https:
//www.softlayer.com/sites/default/files/softlayer privacy
agreement - may 2016.pdf. ONLINE.

[15] Amazon Web Services. Data Privacy. https://aws.amazon.com/
compliance/data-privacy-faq. ONLINE.

[16] Microsoft Azure. Trust Center. https://azure.microsoft.com/
en-us/support/trust-center. ONLINE.

[17] Hassan Takabi, James B.D. Joshi, and Gail-Joon. Ahn. Security
and Privacy Challenges in Cloud Computing Environments.
IEEE Security & Privacy, 8(6):24–31, November/December
2010.

[18] Francisco Rocha and Miguel Correia. Lucy in the Sky without
Diamonds: Stealing Confidential Data in the Cloud. In the 41st

IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), Hong Kong, China, June
2011.

[19] In Kee Kim, Sai Zeng, Christopher Young, Jinho Hwang, and
Marty Humphrey. A Supervised Learning Model for Identifying
Inactive VMs in Private Cloud Data Centers. In the 17th

ACM/IFIP/USENIX Middleware Conference (Middleware ’16),
Trento, Italy, December 2016.

[20] Jinho Hwang, Maja Vukovic, and Nikos Anerousis. FitScale:
Scalability of Legacy Applications through Migration to Cloud.
In International Conference on Service Oriented Computing
(ICSOC), Banff, Alberta, Canada, October 2016.

[21] Amazon Web Services. https://aws.amazon.com. ONLINE.
[22] Microsoft Azure. https://azure.microsoft.com. ONLINE.
[23] Google Cloud Platform. https://cloud.google.com. ONLINE.
[24] IBM SoftLayer. http://www.softlayer.com. ONLINE.
[25] Jinho Hwang. Computing Resource Transformation, Consol-

idation and Decomposition in Hybrid Clouds. In the 11th

International Conference on Network and Service Management
(CNSM ’15), Barcelona, Spain, November 2015.

[26] Amazon Cloud Watch. https://aws.amazon.com/cloudwatch.
ONLINE.

[27] Jinho Hwang, Kun Bai, Michael Tacci, Maja Vukovic, and
Nikos Anerousis. Automation and Orchestration Framework
for Large-Scale Enterprise Cloud Migration. IBM Journal of
Research and Development, 60(2-3):1:1–1:12, March 2016.

[28] theophilus Benson, Aditya Akella, Anees Shaikh, and Sambit
Sahu. CloudNaaS: Semi-synchronized Non-blocking Concur-
rent Kernel Heap Buffer Overflow Monitoring. In the ACM
Symposium on Cloud Computing (SoCC ’11), Cascais, Portugal,
October 2011.

[29] AWS Auto Scaling. https://aws.amazon.com/autoscaling. ON-
LINE.

[30] Google Cloud Platform Autoscaling Groups of Instances. https:
//cloud.google.com/compute/docs/autoscaler. ONLINE.

[31] Scott Devoid, Narayan Desai, and Lorin Hochstein. Poncho:
Enabling Smart Administration of Full Private Clouds. In the
27th USENIX Large Installation System Administration Confer-
ence (LISA ’13), Washington D.C., USA, November 2013.

[32] Hyun Wook Baek, Abhinav Srivastava, and Jacobus Van der
Merwe. CloudVMI: Virtual Machine Introspection as a Cloud
Service. In the 1st IEEE International Conference on Cloud
Engineering (IC2E ’14), Boston, MA, USA, March 2014.

[33] Rodrigo N. Calheiros, Rajiv Ranjan, and Rajkumar Buyya.
Virtual Machine Provisioning Based on Analytical Performance
and QoS in Cloud Computing Environments. In the 40th

International Conference on Parallel Processing (ICPP ’11),
Taipei, Taiwan, September 2011.

[34] Matthew Hertz and Emery D. Berger. Quantifying the Per-
formance of Garbage Collection vs. Explicit Memory Man-
agement. In the ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages & Applica-
tions (OOPSLA ’05), San Diego, CA, USA, October 2005.

[35] Ron C. Chiang, Jinho Hwang, H. Howie Huang, and Timothy
Wood. Matrix: Achieving Predictable Virtual Machine Perfor-
mance in the Clouds. In the 11th International Conference on
Autonomic Computing (ICAC ’14), Philadelphia, PA, USA, June

11

2014.
[36] Kun Bai, Niyu Ge, Hani Jamjoom, Ea-Ee Jan, Lakshmi Renga-

narayana, and Xiaolan Zhang. What to Discover Before Migrat-
ing to the Cloud. In the IFIP/IEEE International Symposium
on Integrated Network Management (IM ’13), Ghent, Belgium,
May 2013.

[37] Michael Nidd, Kun Bai, Jinho Hwang, Maja Vukovic, and
Michael Tacci. Automated Business Application Discovery. In
the IFIP/IEEE International Symposium on Integrated Network
Management (IM ’15), Ottawa, Canada, May 2015.

[38] Magellan the Argonne Cloud Computing Platform. http://cloud.
mcs.anl.gov. ONLINE.

[39] Kara Nance, Brian Hay, and Matt Bishop. Virtual Machine
Introspection: Observation or Interference? IEEE Security &
Privacy, 6(5):32–37, September 2008.

[40] Abhishek Gupta, Laxmikant V. Kale, Dejan Milojicic, Paolo
Faraboschi, and Susanne M. Balle. HPC-Aware VM Placement
in Infrastructure Clouds. In the 1st International Conference
on Cloud Engineering (IC2E ’13), San Francisco, CA, USA,
March 2013.

[41] Maik Lindner, Fiona McDonald, Barry McLarnon, and Philip
Robinson. Towards Automated Business-driven Indication and
Mitigation of VM Sprawl in Cloud Supply Chains. In the
6th IFIP/IEEE International Workshop on Business-driven IT
Management (BDIM ’11), Dublin, Ireland, May 2011.

[42] George Amvrosiadis, Angela Demke Brown, and Ashvin Goel.
Opportunistic Storage Maintenance. In the 25th ACM Sympo-
sium on Operating Systems Principles (SOSP ’15), Monterey,
California, USA, October 2015.

[43] Wikipedia. Pearson product-moment correlation coeffi-
cient. https://en.wikipedia.org/wiki/Pearson product-moment
correlation coefficient. ONLINE.

[44] Curl: Command Tool and Library. https://curl.haxx.se. ONLINE.
[45] IBM. Bigfix: Endpoint security and management solution. http:

//www-03.ibm.com/security/bigfix. ONLINE.
[46] Puppet. Configuration management. https://puppet.com/

solutions/configuration-management. ONLINE.
[47] Chef. https://www.chef.io. ONLINE.
[48] Ansible. https://www.ansible.com. ONLINE.
[49] SaltStack. https://saltstack.com. ONLINE.
[50] CFEngine. https://cfengine.com. ONLINE.
[51] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Antfarm: Tracking Processes in a Virtual
Machine Environment. In the USENIX Annual Technical Con-
ference (ATC ’06), Boston, MA, USA, May 2006.

[52] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Geiger: Monitoring the Buffer Cache in a
Virtual Machine Environment. In the 12th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’06), San Jose, CA, USA, October
2006.

[53] Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke
Lee. Lares: An Architecture for Secure Active Monitoring
Using Virtualization. In the IEEE Symposium on Security and
Privacy (SP ’08), Oakland, CA, USA, May 2008.

[54] Donghai Tian, Qiang Zeng, Dinghao Wu, Peng Liu, and
Changzhen Hu. Kruiser: Semi-synchronized Non-blocking
Concurrent Kernel Heap Buffer Overflow Monitoring. In the
19th Annual Network & Distributed System Security Symposium
(NDSS ’12), San Diego, CA, USA, February 2012.

[55] European-Union. the General Data Protection
Regulation. http://www.consilium.europa.eu/en/policies/
data-protection-reform/data-protection-regulation. ONLINE.

[56] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. the
Element of Statistical Learning: Data Mining, Inference, and
Prediction. 2011.

[57] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey.

Empirical Evaluation of Workload Forecasting Techniques for
Predictive Cloud Resource Scaling. In the 9th IEEE Inter-
national Conference on Cloud Computing (CLOUD ’16), San
Francisco, CA, USA, June 2016.

[58] Palden Lama and Xiaobo Zhou. AROMA: Automated Resource
Allocation and Configuration of MapReduce Environment in the
Cloud. In the 9th ACM International Conference on Autonomic
Computing (ICAC ’12), San Jose, CA, USA, September 2012.

[59] Shin-Ying Huang and Yen-Nun Huang. Network Traffic
Anomaly Detection based on Growing Hierarchical SOM. In
the 43rd Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN ’13), Budapest, Hungary,
June 2013.

[60] Git: Fast Version Control System. http://git-scm.com. ONLINE.
[61] Wikipedia. Devops: Development and operation. https://en.

wikipedia.org/wiki/DevOps. ONLINE.
[62] Jill Jermyn, Jinho Hwang, Kun Bai, Maja Vukovic, Nikos

Anerousis, and Salvatore Stolfo. Improving Readiness for En-
terprise Migration to the Cloud. In the 15th ACM/IFIP/USENIX
Middleware Conference (Middleware ’14), Budapest, Hungary,
December 2014.

[63] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. the Hadoop Distributed File System. In the 26th IEEE
Symposium on Mass Storage Systems and Technologies (MSST
’10), Incline Village, NV, USA, May 2010.

[64] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Gh-
odsi, Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion
Stoica. Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center. In the 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’11), Boston, MA,
USA, March 2011.

[65] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David
Oppenheimer, Eric Tune, and John Wilkes. Large-scale Cluster
Management at Google with Borg. In the 10th European
Conference on Computer Systems (Eurosys ’15), Bordeaux,
France, April 2015.

[66] Sadeka Islam, Kevin Lee, Alan Fekete, and Anna Liu. How
a Consumer Can Measure Elasticity for Cloud Platforms. In
the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE ’12), Boston, MA, USA, April 2012.

[67] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John
Wilkes. CloudScale: Elastic Resource Scaling for Multi-Tenant
Cloud Systems. In the ACM Symposium on Cloud Computing
(SoCC ’11), Cascais, Portugal, October 2011.

12

