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Abstract—Scientists have become increasingly reliant on large-
scale compute resources on public IaaS clouds to efficiently process
their applications. Unfortunately, the reactive nature of auto-
scaling techniques made available by the public cloud provider can
cause insufficient response time and poor job deadline satisfaction
rates. To solve these problems, we designed an end-to-end elastic
resource management system for scientific applications on public
IaaS clouds. This system employs the following strategies: 1)
an accurate and dynamic job execution time predictor, 2) a
resource evaluation scheme that balances cost and performance,
and 3) an “availability-aware” job scheduling algorithm. This
comprehensive system is deployed on Amazon Web Services and
is compared with other state-of-the-art resource management
schemes. Experimental results show that our system achieves a
9%–32% improvement with respect to the deadline satisfaction
rate over other schemes. We achieve this deadline satisfaction
rate improvement while still providing improved cost-efficiency
over other state-of-the-art approaches.

Index Terms—IaaS Clouds, Job Scheduling and Resource Man-
agement, Job Execution Time Prediction;

I. INTRODUCTION

Elasticity and pay-as-you-go pricing models have attracted
both industry and scientific communities to cloud computing
[4]. Elasticity, one of the key features of cloud computing,
enables resources to be scaled up and down based on users’
needs. However, determining the exact amount of required
resources can be very difficult due to dynamic changes in the
workload [17] and variable job execution time. Public cloud
service providers like AWS (Amazon Web Services) [1] and
Microsoft Windows Azure [2] offer an automatic resource scal-
ing service called auto-scaling, which is a rule/scheduling-based
resource manager [1, 3, 17]. This feature allocates resources of
VMs (Virtual Machine) based on a scheduled timeline or a
set of user defined rules. These rules trigger scaling based on
general performance indicators like CPU load, memory usage
and I/O bandwidth usage. Auto-scaling is a convenient way
to manage resources automatically, but lacks the awareness
of deadline considerations. Thus, auto-scaling performs poorly
when exposed to unexpected workload demands or highly
variable job execution times. For example, the system cannot
immediately scale proper resources to handle the demand or
job deadline because of delays caused by the monitoring of the
VMs and new VM start-up time [16].

The fundamental reason that current auto-scaling approaches
have limitations, comes from their reactive nature. The response
time and cost efficiency of auto-scaling could be enhanced if
there are predictive aspects in the auto-scaling mechanisms.
These predictive aspects can help to determine proper resources
to be prepared in advance or to provide better information for
job scheduling. In order to provide better response time and
cost efficiency, predictive techniques [6, 9, 19] for managing
cloud resources have been applied, focusing on estimation of
future resource demands. However, these approaches perform
poorly when applications have high variance of their execution
time. Considering this gap, we describe to predict the appli-
cation execution time in order to achieve a proactive resource
management system on public IaaS clouds that provides faster
response time and improved cost efficiency.

In this paper, we introduce LCA, a resource management
system, which provides predictable performance for job dead-
line satisfaction and increased cost efficiency for scientific
applications on public IaaS clouds. (LCA is named after
the three starting letters of our approaches.) LCA takes into
account scientific applications working with jobs that have user-
defined deadlines. Our approach is focused on 1) estimating job
execution time, 2) resource evaluation, and 3) job scheduling.
For job execution time prediction, we employ LLR (Local
Linear Regression) [7] to estimate job execution time, taking
into account the size of data required for the computation
and type of VM instances since these are key factors that
affect job execution time. For resource evaluation, we suggest
a cost-performance optimized evaluation scheme, which deter-
mines job deadline satisfaction by comparing prediction results
with the job deadline, and evaluates cost efficiency of VM
instances by computing the cost-performance ratio. Moreover,
we describe an availability-aware job scheduling algorithm that
assigns jobs to available resources first, instead of starting up
a new machine. This improves cost-efficiency and performance
for LCA by minimizing the spawning of new instances.

We design and implement the resource manager on top of
AWS and use various types of VM instances provided by AWS.
We measure the performance of the LLR predictor by compar-
ing with well-known existing approaches such as kNN [15, 20],
linear regression [12], and mean-based prediction [20]. We
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measure the job deadline satisfaction rate, total running cost,
and VM utilization by comparing with the state-of-art baselines
under various workload patterns. The results show that our
LLR predictor has 11.15%–17.78% better prediction accuracy
than other well-known approaches. LCA has a 9%–32% better
job deadline satisfaction rate than the two baselines. LCA
shows that it is more tolerable system with respect to workload
changes as compared to the two baselines. LCA also shows an
average 18% VM utilization improvement and leverages 16%–
41% less VMs. LCA achieves a 18%–35% better cost efficiency
than SCS [15] with LLR predictor.

The contributions of this paper are:
• We introduce a novel elastic resource management system

for scientific applications based on job execution time pre-
diction, cost-performance ratio-based resource evaluation
and resource availability-aware scheduling.

• We introduce a simple and effective job execution time
prediction method called Local Linear Regression (LLR),
which shows better prediction accuracy than other ap-
proaches.

• The cost-performance ratio-based resource evaluation
method improves better job deadline satisfaction rate. The
availability-aware job scheduling algorithm minimizes the
time and cost overhead generated by starting new VMs,
and it helps users reduce financial cost and execution time
for processing their jobs.

The rest of this paper is organized as follows. Section II
contains the related work. Section III describes the system
design and three main approaches of LCA. Section IV contains
the evaluation and discussion, and Section V provides the
conclusion.

II. RELATED WORK

A. Resource Management in Cloud Computing

Mao and Humphrey [17] introduced a linear integer
programming-based optimization approach to solve auto-
scaling problems on IaaS by focusing on job deadline and
workflows of an application. Their approach scales the VM
resources by computing the optimal amount of resources. This
is done using linear programming with variable parameters on
cloud applications (e.g. job deadline, budget constraints, appli-
cation workflows, etc.). Another optimization-based approach
was introduced by Chaisiri et al [8]. They focused on resource
demands from users and cost of VMs, and used a stochastic
programming method to find the optimal amount of resources.
They introduced a model using the combination of on-demand
and reserved resources trying to solve the under- and over-
provisioning problem.

Prediction-based approaches [6, 9, 19] have been conducted
to manage cloud computing resources. These works employ
statistical learning mechanisms to predict future workload
change or system status of the VMs. Their goal is to manage
computing resources based on the prediction results. Gong et
al [6] used two predictors to forecast short term (unexpected)
and long term (seasonal) workload change. Roy et al [19] used

ARMA model to predict the expected workload and tried to
calculate minimum cost for resource provisioning based on
prediction results and response time analysis. Jiang et al [9]
used a similar time-series predictor with [19] but they focused
on the change of resource cluster’s state rather than predicting
workload change, and scaled up and down their cluster based
on the prediction result.

The difference between optimization-based approaches and
this paper is that the optimization approaches employ an
assumption that the execution time of the job is already
known or easily predictable. The optimization function uses the
assumption as one of its input parameters. However, predicting
job execution time for real applications is not a trivial research
topic and accurate prediction of job execution time provides
more sufficient information to improve the job deadline sat-
isfaction rate and cost efficiency of the resource managers.
Existing predictive approaches mainly focus on forecasting
future workload change or system status of cloud resources, but
we focus on the job execution time estimation in order to handle
the scientific applications which have high variance of the job
execution time. Moreover, this research is also different from
[14]. They offer a workflow ensemble approach for resource
provisioning to satisfy cost and deadline constraints, but they
focused on a single VM type resource model for scientific
workflows, because they assume an application has a single cost
effective VM type. We cannot use this assumption because of
the high job execution time variance of our application, which
implies the application’s optimal VM type can change due to
the size of the data to be processed as well as the current system
status.

B. Job Execution Time Prediction

There have been many attempts to predict job execution
time since it can improve the performance of a job scheduler
or resource manager for large scale distributed systems. In
this section, we review two major approaches to predict job
execution time: instance-based learning [10, 13, 18, 20] and
linear approach [5, 12].

The instance-based learning is widely used in large scale dis-
tributed systems such as high-performance parallel computing
[18, 20] and Grid [10, 13]. This approach stores N recent jobs
to build the experience base and searches for the most similar
past jobs from the experience base by using a distance function.
Then, this method predicts the job execution time for the new
job by using kNN with similar samples.

The linear approach is a simple and intuitive method to
estimate the execution time of jobs by finding a linear relation
between past executions and the new job or by forecasting
future resource status. Lee et al [12] introduced an application-
centric estimation approach that uses a linear regression based
prediction using execution time history of the target applica-
tion and the variables affecting the application’s execution.
[5] introduced a resource-specific approach that focused on
estimating the load status of the CPU in order to use it to
predict the job execution time. They used the AR(16) method
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Fig. 1. Overview of System Architecture of LCA

(Auto Regression with 16 order of linear model) to estimate
CPU load status.

These two approaches are relevant to this work but we have
two different aspects to take into account. First, we are targeting
to build a resource manager on public IaaS clouds, which
offer various types of VMs that has a different degree of the
performance. Moreover, the execution time of the application
varies based on the size of data to be processed. We therefore
need to consider two factors (type of resources, size of data),
and we aim to build more find-grained and suitable prediction
model of the job execution time for our cloud application.

III. SYSTEM DESIGN AND APPROACHES

A. Overview of LCA System Design

LCA is composed of three major components and the
overview of system architecture of LCA is shown in Fig. 1.

1) Prediction Module: This module has two sub-
components: the LLR predictor and the job history repository.
The LLR predictor estimates execution time for an input job
on various types of VM in public clouds. This predictor will be
discussed in Section III-B. The job execution history repository
stores predicted and real job execution results and, it provides
samples to estimate the job execution time to help the LLR
predictor reduce prediction error and update the prediction
model.

2) Resource Evaluation Module: This plays two major
roles: 1) determining that the job can meet the deadline by
comparing the predicted results and the user defined deadline
and 2) evaluating the cost-efficiency of VMs for the job
execution by using the cost-performance optimized resource
evaluation scheme. This evaluation scheme will be discussed
in Section III-C.

3) Job Scheduling and VM Scaling Module: This module
consists of two sub-components: the availability-aware job
scheduler and the VM manager. The availability-aware job
scheduler is in charge of job scheduling taking into account the

TABLE I
SPECIFICATION OF GENERAL PURPOSE MICROSOFT WINDOWS INSTANCES

ON AMAZON EC2, NORTHERN VIRGINIA, USA

VM Type ECU1 # of CPUs Memory Hourly Price
m1.small 1 1 1.7 GB $0.075

m1.medium 2 1 3.7 GB $0.149
m1.large 4 2 7.5 GB $0.299
m1.xlarge 8 4 15 GB $0.598

resource availability, the cost efficiency, and the job deadline
satisfaction. The VM manager is responsible for VM scaling.
It spawns up more VMs when the job scheduler cannot find
a proper resource to assign an input job. The VM manager
also terminates a VM if the VM’s running time is going to
meet hourly bound for pricing and the VM has satisfied a
condition for its termination. This job scheduling and VM
scaling mechanism will be explained in Section III-D

B. Job Execution Time Prediction

Current auto-scaling approaches cannot handle those appli-
cations having high variance of their execution time due to
lack of a capability to estimate the job execution time. As
one of the major innovations in this work, we describe to
estimate the job execution time of the scientific applications, in
order to achieve a better proactive resource management system
on IaaS clouds. Using a data-driven approach, we describe to
estimate the job execution time for an application based on the
historical measurements of the execution time from that same
application. Using a scientific application which calculates the
watershed delineation [11] as the main case study, we first
deploy this scientific application with 26 sample executions on
four different types of VMs on AWS. The execution results
measured with these 26 sample runs on the AWS described in
Table I.
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TABLE II
PEARSON CORRELATION COEFFICIENT OF TWO OPERATIONS WITH SIZE

OF DATA AND TYPE OF VIRTUAL MACHINE

Operation Type Data Size VM Type
Non-Data Intensive Operation 0.0973 0.7089

Data Intensive Operation 0.6129 0.3223

We have observed that normally scientific applications in-
clude several pipeline procedures where each procedure does
either data intensive operation or non-data intensive operation.
The data intensive operation focuses on processing data and
its execution time seems to be affected by the size of data
to be processed. Non-data intensive operations do not process
data, and their execution time seems not to be affected by the
size of data. Instead, the time of their execution appears to be
correlated with the performance of the VMs. However, overall,
if a user requests a job for running a scientific application, every
pipeline procedure in the application will be executed and the
overall job execution time equals to the sum of the execution
times for every involved pipeline procedure.

Based on the above observations, we conduct a correlation
study to check the following four relationships for running a
scientific application on IaaS clouds.
• For the data intensive operations, what is the relationship

between the job execution time and the size of the data to
be processed?

• For the data intensive operations, what is the relationship
between the job execution time and the VM type?

• For non-data intensive operations, what is the relationship
between the job execution time and the size of the data to
be processed?

• For non-data intensive operations, what is the relationship
between the job execution time and the VM type?

Using equation-(1), we investigate the relationship through
calculating the absolute value of Pearson’s correlation coeffi-
cient [22] between the two variables involved in each of the
four cases above. In equation-(1), X means the independent
feature variables (e.g. size of data, VM type) for the execution
time, and Y indicates the execution time of each operation. For
Pearson correlation coefficient, 1 means a very strong linear
relation between the independent variable X and the execution
time Y , and 0 means vice versa.

r =

∣∣∣∣∣∣∣
∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2

∣∣∣∣∣∣∣ (1)

The calculated correlation coefficients for all four cases are
shown in Table II. We can see that:
• For non-data intensive operations, there exists strong linear

relation between the VM type and the execution time,
whereas, a negligible linear relation exists between the size

1Single ECU (EC2 Compute Unit) provides the equivalent CPU capacity of
a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor [1].

of data to be processed and the measured job execution
time.

• Differently, data intensive operations have moderate linear
correlation among the size of data vs. job execution time,
and weak linear relation with regard to the VM types.

The above correlation analysis clearly indicates that a simple
linear regression function mapping linearly from the feature
variables X to the execution time variable Y cannot produce
reliable predictions, since the linear model produces results with
high bias. As discussed in the Related Work, another way to
predict the job execution time was the instance-based approach,
e.g. k-nearest neighbors (kNN) method. However this method
suffers from the issue of producing the predictions with high
variance, especially when the sample size is small, e.g. for our
case with the number of samples N=26. Considering both these
concerns, we describe a novel prediction model named Local
Linear Regression (LLR) which aims to learn a function f()
transforming (mapping) the feature variables X to Y accurately,
and allowing f() to be very flexible, yet smooth at the same
time.

The LLR achieves the flexibility by fitting a different and
simple linear model separately at every point x0. This is done
utilizing the following three-stage process.

1) For each testing point x0, apply the kNN method to find
a set V (x0) including its top-k neighboring samples in
the training (historical) data set.

2) Using only those observations in the set V , we fit a
simple linear regression model, i.e. learning the param-
eters α(x0) and β(x0) through minimizing the objective
function in equation-(2).

min
α(x0),β(x0)

∑
xi∈V (x0)

[yi − α(x0)− β(x0)xi]2 (2)

3) Then the predicted job execution time f(x0) for the
current testing job x0 will be derived from the equation-
(3).

f(x0) = α(x0)− β(x0)x0 (3)

The basic idea of local linear regression vs. global linear
regression is explained by Fig. 2 using the sample points
measured on a m1.large instance on AWS. The line in Fig. 2(a)
indicates a regression line derived by using all training samples
except the current point x0. The line in Fig. 2(b) is learned by
using only the kNN (using one more application parameter) of
point x0 (here, k=3). Clearly we can see that, using a smaller
number of neighboring samples in Fig.2-(b) achieves a more
effective prediction of the job execution time for target point x0,
than using all the training samples in Fig. 2(a). Furthermore, we
can also evaluate the goodness of predictions through a measure
called model fitness (R2) [15] from the regression line fitting.
Fig. 2(b) achieves a better value of R2 than the fitness value
from Fig.2-(a).

In summary, we conclude that local regression with selected
neighbors can produce better estimation for the job execution
time than linear regression. In our algorithm, selecting the
proper distance function and the right value for k when using
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(a) Linear regreassion (using all sam-
ples)

(b) Local Linear Regression (using se-
lected neighbors)

Fig. 2. Linear Regression vs. Local Linear Regression. Left graph shows that
fitting a global linear regression model to map from the input feature describing
the size of the data, to the output Y variable representing the job execution
time. X-axis is job execution time (unit second), Y -axis is size of data to be
processed (unit bytes). Right graph shows that fitting a local linear regression
model using only the neighboring training points for the current target test
point: x0

TABLE III
PREDICTION RESULTS OF JOB EXECUTION TIME FOR THREE DIFFERENT

JOBS. DEADLINE FOR ALL THREE JOBS IS 60 MINUTES.

VM Info Prediction Result
VM Type Min. Price Job A Job B Job C
m1.small $0.00125 80 min. 80 min. 80 min.

m1.medium $0.00248 50 min. 55 min. 40 min.
m1.large $0.00498 40 min. 25 min. 20 min.
m1.xlarge $0.00997 25 min. 11 min. 10 min.

kNN method to choose the neighbor set V are two critical
factors to achieve reliable prediction results. We use k=4 in
kNN and the Euclidean distance function. The features being
utilized for representing each job operation xi includes the two
most important variables, the size of the data to be processed
and the type of VMs, plus one more variable representing the
application specific parameter. In the experiment section, we
compare the LLR model with both the global linear regression
baseline and a baseline using kNN for predicting the job
execution time.

C. Resource Evaluation

LCA aims to not only satisfy a deadline for each job,
but to also reduce the total execution cost for all jobs. To
this end, LCA evaluates VMs to select a cost efficient VM
that meets the deadline. This is because the prediction model
for job execution time produces several options of VMs as
discussed in the previous section. As shown in Table I in
Section III-B, IaaS clouds providers determine the pricing based
on the specification of the hardware. For example, AWS’s
m1.large instance has double the hardware of m1.medium
instance. And m1.large instance costs more than two times
of m1.medium instance. This pricing can seem reasonable
as m1.larger instance can outperform the m1.medium by
two. However, hardware specification itself does not guarantee
proportional results so characteristics of applications must be
considered.

For resource evaluation of VMs’ cost efficiency, we consider
the following three cases. Suppose that a user submits three
different jobs, each with a 1 hour deadline, for a scientific
application. The prediction results of job execution time for
the three jobs on four different types of VMs are shown in
Table III. Three types of VMs are able to meet the deadline
(1 hour), but m1.small cannot meet the user-defined deadline.
Thus, m1.small is excluded from the candidate list for the
three executions. Note that we use minute-based cost (hourly
cost/60) to explain these cases. In the case of job A, m1.large
is only 1.25x faster than m1.medium but costs twice that of
m1.medium. m1.xlarge is 2x faster than m1.medium but
it is 4 times more expensive than m1.medium. In this case,
using the cheapest instance (m1.medium) among the three
candidates (m1.medium, m1.large, and m1.xlarge) is the
best in terms of cost efficiency, because m1.medium has the
smallest (best) value for the performance-cost ratio (minute cost
* execution time). For processing job B, m1.xlarge is 2.28x
faster than m1.large and 5.14x faster than m1.medium but it
is only 2 times more expensive than m1.large and 4 times more
expensive than m1.medium. In this case, using m1.xlarge for
processing job B is the most cost efficient. For the last case
job C, m1.medium, m1.large, and m1.xlarge have the same
cost-performance ratio, so we can use any instance among three
candidates for processing job C.

By considering the above three cases, we suggest a cost-
performance optimized resource evaluation. After predicting the
execution time of an incoming job, the prediction mechanism
in LCA provides several execution options and each option can
be expressed as optionn = {Tn, Cn, Vn}. Tn is the predicted
job execution time (minutes) based on VM types, Cn is the
execution cost per minutes, and Vn is the VM type. This eval-
uation scheme calculates a cost-performance ratio (Tn × Cn)
for each option and sorts options in ascending order based on
the cost-performance ratio. If every option has the same cost-
performance ratio, this scheme sorts options in ascending order
based on hourly price. This scheme is expressed in equation-
(4).

Cost-Perf. Ratio− basedResource Evaluation
= sort{t1 × c1, t2 × c2, ..., tn × cn} (4)

D. Availability-Aware Job Scheduling and VM Scaling

Availability-aware job scheduling and VM scaling consists
of two steps: 1) job scheduling and 2) VM scaling. Job
scheduling is used once the resource evaluation is completed,
LCA assigns an incoming job to a proper VM. For this
task, LCA uses the results of the cost-performance optimized
resource evaluation (Section III-C) and builds a VM list from
the current running VM pool. For instance, suppose LCA has
8 running VMs and VM index 1, 2 are m1.small, VM index
3, 4 are m1.medium, VM index 5, 6 are m1.large, and
VM index 7, 8 are m1.xlarge. In the example in Table III,
LCA builds a candidate VM list (VM List = [InstanceType:
m1.medium, VMs: VM3, VM4, InstanceType: m1.large,
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TABLE IV
VM CANDIDATE LIST FOR JOB A BASED ON RESOURCE EVALUATION

Sorted Subset Order VM Type Running VMs
1 m1.medium VM3, VM4

2 m1.large VM5, VM6

3 m1.xlarge VM7, VM8

VMs: VM5, VM6, InstanceType: m1.xlarge, VMs: VM7,
VM8]) for Job A. The candidate VM list for job A is shown
in Table IV.

Based on the subset order, LCA calculates the expected
time of job completion on each VM in the first subset
({InstanceType : m1.medium, VMs : VM3, V M4}) in-
cluding queue wait time and remaining execution time for the
current job on VMs. Then, LCA computes the job completion
time that can meet the deadline for the job. Fig. 3 and equation-
(5) explain how to calculate the job completion time on each
VM. Fig. 3 shows a case for assigning a job to a selected
VM. Equation-(5) is a formula to calculate the expected job
completion. The remaining execution time (Tremain) for the
currently running job on the VM is calculated by “the predicted
execution time of that job (Tpred) – current running time for
that job on its VM.” ε is a buffer to handle the prediction
error. If a proper VM which meets the deadline for the job,
is found in the first subset, LCA assigns the job to that VM’s
queue. In this step, if multiple VMs can meet the deadline,
LCA selects a VM that offers the earliest job completion
time for the job. If LCA cannot find any VM to meet the
deadline, it begins searching for a VM in the next order subset
({InstanceType : m1.large, V Ms : VM5, V M6}). LCA
repeats this procedure for each subset.

Fig. 3. Job assignment to a VM.

Job Completion T ime =

N∑
i=2

Tpred,Ji + Tremain,J1 + ε (5)

VM scaling mechanism is used when LCA cannot find a
proper VM for the assigned job from the above scheduling
procedure. In this case, LCA adds a resource for this job
(scaling up). LCA updates the predicted execution time for each
VM type by adding lag time to start a new VM [16]. Then, LCA
re-evaluates cost efficiency for VM types by using the updated
job execution time and resource evaluation mechanism. LCA
creates a VM, which has the highest cost efficiency and assigns
the job to the VM. If the updated job execution time for all VM
types cannot meet the deadline, LCA rejects this job. LCA also
has a VM scaling down mechanism that considers hourly basis
price policy for public IaaS clouds. When a VM’s running time
is close to its hourly bound, LCA checks the status of VM and
its working queue. LCA terminates the VM if the VM’s status

(a) Steady Workload (b) Bursty Workload

(c) Incremental Workload (d) Random Workload

Fig. 4. Workload patterns used in the experiments.

TABLE V
WORKLOAD INFORMATION.

Workload Average Job Standard Deviation of
Pattern Arrival Time Job Arrival Time
Steady 121.52s 16.73
Bursty 153.84s 140.92

Incremental 72.00s 64.77
Random 119.31s 64.99

is idle and the VM’s queue is empty, which means the VM has
no more jobs to process.

The nature of an availability-aware scheduling and VM
scaling mechanism is that it maximizes the use of current VMs
for the job assignment rather than creating a new VM instance.
This mechanism has the following advantages:
• It maximizes the utilization of VM instances.
• It minimizes the performance and cost overhead due to

start up lag time.

IV. EVALUATION

We conduct a performance evaluation of LCA by comparing
with two state-of-the-art baselines: 1) SCS (Scaling Consolida-
tion Scheduling) [15] and 2) SCS + LLR. The reason we make
a new baseline (SCS + LLR) is that we want to evaluate how
the LLR predictor improves the performance of the resource
managers as well as establish a cost comparison between the
baselines. We also want to evaluate the performance benefit of
LCA’s resource evaluation scheme, and availability-aware job
scheduling and VM scaling as compared to those of SCS.

We implement and deploy LCA and other resource managers
on AWS and use a watershed delineation system [11] as our
scientific application. We compare the performance of the
approaches under the same workloads. Four workloads patterns
(steady, bursty, incremental, and random workloads), shown in
Fig. 4, are used in the experiments. Table V and VI show
detailed information on generating the four workload patterns
and the job requests used in the experiments. We generate
identical job requests based on these workloads, and send
the jobs to all resource managers on AWS and measure 1)
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TABLE VI
JOB REQUEST INFORMATION

Number Job Deadline Job Duration
of Jobs Average Std. Dev. Average Std. Dev

100 1800s 581 905.40s 748

TABLE VII
PERFORMANCE EVALUATION OF FOUR PREDICTORS (LLR, LR, kNN,

Mean)

LLR Lin. Regression kNN mean
Avg. Accuracy 78.77% 67.72% 65.38% 60.99%

MAPE 0.2773 0.3901 0.5012 0.8254

performance of predictor in three approaches, 2) job deadline
satisfaction rate, 3) total running cost, and 4) VM utilization.
For this experiment, all three approaches use four different
types of general purpose VMs running Microsoft Windows
Server 2012 offered by AWS. The information on VMs used
by resource managers are shown in Table I in Section III-B.

A. Predictor Performance

We first measure the performance of LLR predictor by
comparing with linear regression, kNN, and a mean-based
predictor. Linear regression and kNN are used in SCS. And
we use a mean-based predictor as a baseline because it is a
simple and convenient way to predict the job execution time
[21]. Evaluation of the predictor performance is conducted by
measuring the two following criteria: prediction accuracy and
MAPE (Mean Absolute Percentage Error) [7]. A higher value
of prediction accuracy is better, and a lower value of MAPE
means better performance.

Pred. Accuracy =


Tactual
Tpredicted

, Tpredicted ≥ Tactual

Tpredicted
Tactual

, Tpredicted < Tactual

(6)

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Tactual,i − Tpredicted,iTactual,i

∣∣∣∣∣ (7)

Table 7 shows the performance evaluation results for the
predictors. LLR outperforms the others in all three criteria.
The average prediction accuracy of LLR is 11.15%, 13.39%,
and 17.78% better than linear regression, kNN, and mean-
based predictor respectively. Correspondingly, MAPE of LLR
is 28.91%, 44.67%, and 66.40% less than linear regression,
kNN, and mean-based prediction.

B. Job Deadline Satisfaction Rate

In this section, we measure the job deadline satisfaction rate
for LCA, SCS + LLR, and SCS. The job deadline satisfaction
rate is calculated by the following equation.

Deadline Satisfact. Rate =
NDeadlineSatisfiedJobs

NAllJobs
(8)
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Fig. 5. Job deadline satisfaction rate of LCA, SCS+LLR, and SCS in the four
workload patterns. STD: steady, BUR: bursty, INC: incremental, and RND:
random workload.

TABLE VIII
PERFORMANCE DEGRADATION BY WORKLOAD CHANGE. (FROM STEADY

TO BURST)

LCA SCS+LLR SCS
Performance Degradation -10.11% -12.20% -21.74%

The experimental result is shown in Fig. 5. LCA outperforms
other baselines for all workloads and shows an average of 83%
job deadline satisfaction rate. LCA has an average improvement
of 9.21% and 31.75% over than SCS+LLR and SCS. An
interesting result is that the resource managers with LLR (LCA
and SCS+LLR) outperform SCS that uses linear regression
and kNN for the job execution time estimation. All resource
managers rely on a prediction result of the job execution time
to manage VMs and assign the incoming job to a specific
VM. As we discussed in the previous evaluation, the LLR-
based predictor shows better performance than others such as
linear regression and kNN. This means that the LLR predictor
provides a more accurate estimation of the job execution time.
More accurate prediction results enable the resource managers
to assign a job to a suitable VM where it is more likely to
satisfy the job deadline. This performance gain comes from
differences in job scheduling and VM scaling mechanisms
considering both resource managers (LCA and SCS+LLR)
have the same predictor for the job execution time estimation.
This performance benefit implies that the availability-aware
job scheduling and VM scaling effectively manages incoming
jobs/VM resources to satisfy the user-defined job deadline.

All resource managers show the best performance in the
steady workload and the worst performance in the bursty
workload. To figure out the tolerance of the resource managers
for the various workloads, we measure the performance degra-
dation by changing the workload from steady to bursty. The
result is shown in Table VIII. LCA has 10.11% performance
degradation due to the workload change from steady to bursty.
This is 1.20x and 2.15x less performance degradation than
SCS-LLR and SCS This result shows that LCA has higher
tolerance to workload change as compared to SCS+LLR,
SCS and Optimal Scaling. As LCA outperforms SCS+LLR
in both the job deadline satisfaction rate and the performance
degradation, this result implies that LCA’s two other strategies
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Fig. 6. Overall running cost of VM instances used by LCA, SCS+LLR, and
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workload).

(resource evaluation and scheduling) help the system improve
both performance metrics.

C. Total Running Cost

We measure the overall running cost of VMs used to process
all job requests in steady and bursty workloads. To check the
total running cost, we use billing and cost management service
in AWS as well as an embedded cost calculation function for
all resource managers. Note that we exclude the cost for VMs
where the resource managers run. We only measure the cost
of VMs for job processing. The purpose of this experiment
is to evaluate the cost efficiency of the approaches. Cost
efficiency is an important factor for end users in selecting cloud
resource managers for their application deployments because
many companies and institutions have budget caps on the use of
cloud services and applications. Thus, a resource management
system with higher cost efficiency is more attractive to users if
the approaches have an acceptable performance for job deadline
satisfaction rate. Fig. 6 shows the overall running cost for the
resource managers. LCA spends $7.2 for the steady workload
and $9.6 for the bursty workload. It also spends $10.1 and $8.7
for the incremental and random workloads. These results mean
that LCA has an average of 30.9% less cost efficiency than SCS.
However, this is an unfair comparison because SCS does not
have comparable performance in the job deadline satisfaction
rate. So, we compare LCA with SCS+LLR and the results
show that LCA has an average of 27.30% higher cost efficiency
than SCS+LLR in all workloads. This implies that LCA could
also provide improved cost-efficiency over SCS if it has an
acceptable performance for the job deadline satisfaction rate.

D. Number of Created VM and VM Utilization

In order to evaluate the performance of availability-aware job
scheduling and VM scaling scheme, we measure the number
of VMs created by the resource managers and VM utilization.
Table 9 shows the number and type of spawned VMs for LCA,
SCS+LLR and SCS to process the job requests. LCA creates
a total of 15, 39, 35, and 17 VMs from the steady workload
to random workload respectively. SCS+LLR uses a total of 35,
52, 57, and 37 VMs in four workloads. SCS spawns a total of
21, 49, 32, and 25 VMs. LCA uses 16.53%–41.43% less VMs
than the baselines for all workloads. These results imply that

TABLE IX
AVERAGE VM UTILIZATION FOR FOUR WORKLOAD PATTERNS.

LCA SCS+LLR SCS
Idle 18.60% 31.09% 26.20%

Job Execution 69.17% 55.21% 62.37%
Startup 12.23% 13.70% 11.43%

LCA has less delay time (startup lag) for starting new VMs.
This is because the availability-aware job scheduling and VM
scaling mechanism helps LCA utilize the current running VMs
rather than creating new VMs. Also, we measure the startup in
this experiment and we realized that AWS has an average of
507.55 seconds of startup delay.

VM Utilization =

∑n
i=1 Tjob execution,VMi∑n
i=1 Ttotal running,VMi

(9)

We also measure VM utilization, which is calculated by
equation-(9). A VM is created when a resource manager
determines that it needs more VMs to process the job requests.
Once a VM is created, it runs in one of three states. These states
are 1) start up, 2) job execution, and 3) idle. Job execution time
(Tjob execution) in the VM is calculated by the total running
time of VM (Ttotal running) − (startup time (Tstartup) + idle
time (Tidle)). The VM will be terminated if it satisfies its
termination condition. The resource managers have similar ter-
mination conditions. The results of this experiment are shown
in Fig. 7 and Table IX. In all workloads, LCA outperforms
the others. On average (Table IX), LCA has 10.90%–25.29%
more utilization than the baselines and 29.01%–40.17% less
idle time. These results show that LCA’s approaches to schedule
jobs are effective in increasing the VM utilization as well as
improving LCA’s cost-efficiency as LCA has less VM idle time.

V. CONCLUSION

A predictive approach for resource management on IaaS
clouds is an important issue because it enables the resource
m nagers to handle dynamic change in the workloads and
high variance in the job execution time. In this paper we
describe LCA, a system that employs 1) a LLR-based pre-
diction model to estimate the job execution time, 2) a cost-
performance optimized scheme-based resource evaluation, and
3) an availability-aware job scheduling and VM scaling mech-
anism. LCA effectively predicts the job execution time taking
into account the type of VMs and the size of data required
for the computation. The cost-performance optimized resource
evaluation scheme determines the job deadline satisfaction
by comparing prediction results with the job deadline, and
evaluates the cost efficiency of VMs by computing the cost-
performance ratio. The availability-aware job scheduling and
VM scaling mechanism assigns jobs to available resources first,
and improves the cost-efficiency and job deadline satisfaction
rate for LCA by minimizing the spawning of new VMs.

We designed and implemented LCA on top of AWS and
use various types of VMs provided by AWS. We measured the
performance of LCA in five categories by comparing with two
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(c) Incremental Workload

 0

 20

 40

 60

 80

 100

LCA SCS+LLR SCS

V
M

 U
til

iz
at

io
n(

%
)

Startup
Job Exec.
Idle

(d) Random Workload

Fig. 7. VM Utilization of LCA, SCS+LLR, and SCS in the four workload patterns (stready, bursty, incremental, and random).

state-of-the-art baselines under identical workloads. The results
show that LCA has a 28%–73% better job deadline satisfaction
rate and achieves a 17.74%–35.10% higher cost efficiency than
the baselines. Although we use a single scientific application
for the performance evaluation, we believe that the three main
approaches are highly relevant to the study of proactive cloud
resource management systems for other scientific applications.
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